Free Access
Issue
ESAIM: M2AN
Volume 44, Number 5, September-October 2010
Special Issue on Probabilistic methods and their applications
Page(s) 831 - 865
DOI https://doi.org/10.1051/m2an/2010044
Published online 26 August 2010
  1. R. Adams, Sobolev spaces. Academic Press (1978). [Google Scholar]
  2. M. Bossy, J.F. Jabir and D. Talay, On conditional McKean Lagrangian stochastic models. Prob. Theor. Relat. Fields (to appear). [Google Scholar]
  3. H. Brézis, Analyse fonctionnelle. Théorie et applications. Collection Mathématiques appliquées pour la maîtrise, Masson, Paris (1983). [Google Scholar]
  4. C. Chipot and A. Pohorille Eds., Free Energy Calculations, Springer Series in Chemical Physics 86. Springer (2007). [Google Scholar]
  5. E. Darve and A. Pohorille, Calculating free energy using average forces. J. Chem. Phys. 115 (2001) 9169–9183. [CrossRef] [Google Scholar]
  6. R. Dautray and P.L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Springer Verlag (1999). [Google Scholar]
  7. A. Dermoune, Propagation and conditional propagation of chaos for pressureless gas equations. Prob. Theor. Relat. Fields 126 (2003) 459–479. [CrossRef] [Google Scholar]
  8. J. Hénin and C. Chipot, Overcoming free energy barriers using unconstrained molecular dynamics simulations. J. Chem. Phys. 121 (2004) 2904–2914. [CrossRef] [PubMed] [Google Scholar]
  9. N.V. Krylov and M. Röckner, Strong solutions of stochastic equations with singular time dependent drift. Prob. Theor. Relat. Fields 131 (2005) 154–196. [CrossRef] [Google Scholar]
  10. T. Lelièvre, M. Rousset and G. Stoltz, Computation of free energy profiles with parallel adaptive dynamics. J. Chem. Phys. 126 (2007) 134111. [CrossRef] [PubMed] [Google Scholar]
  11. T. Lelièvre, M. Rousset and G. Stoltz, Long-time convergence of an adaptive biasing force method. Nonlinearity 21 (2008) 1155–1181. [CrossRef] [MathSciNet] [Google Scholar]
  12. J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non-linéaires. Dunod (1969). [Google Scholar]
  13. J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Dunod, Paris (1968–1970). [Google Scholar]
  14. P. Metzner, C. Schütte and E. Vanden-Eijnden, Illustration of transition path theory on a collection of simple examples. J. Chem. Phys. 125 (2006) 084110. [CrossRef] [PubMed] [Google Scholar]
  15. A.S. Sznitman, Topics in propagation of chaos, Lecture notes in mathematics 1464. Springer-Verlag (1989). [Google Scholar]
  16. D. Talay and O. Vaillant, A stochastic particle method with random weights for the computation of statistical solutions of McKean-Vlasov equations. Ann. Appl. Prob. 13 (2003) 140–180. [CrossRef] [MathSciNet] [Google Scholar]
  17. R. Temam, Navier-Stokes equations and nonlinear functionnal analysis. North Holland, Amsterdam (1979). [Google Scholar]
  18. V.C. Tran, A wavelet particle approximation for McKean-Vlasov and 2D-Navier-Stokes statistical solutions. Stoch. Proc. Appl. 118 (2008) 284–318. [CrossRef] [Google Scholar]
  19. A.B. Tsybakov, Introduction à l'estimation non-paramétrique. Springer (2004). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you