Free Access
Volume 44, Number 5, September-October 2010
Special Issue on Probabilistic methods and their applications
Page(s) 947 - 975
Published online 26 August 2010
  1. D. Bakry, L'hypercontractivitée et son utilisation en théorie des semigroupes, in Lecture Notes in Math. 1581, École d'été de St. Flour XXII, P. Bernard Ed. (1992). [Google Scholar]
  2. P. Billingsley, Probability and Measure. Third edition, Wiley series in probability and mathematical statistics (1995). [Google Scholar]
  3. E. Cancès, B. Jourdain and T. Lelièvre, Quantum Monte Carlo simulations of fermions. A mathematical analysis of the fixed-node approximation. ESAIM: M2AN 16 (2006) 1403–1449. [Google Scholar]
  4. F. Cerou, P. Del Moral and A. Guyader, A non asymptotic variance theorem for unnormalized Feynman-Kac particle models. Ann. Inst. Henri Poincaré (to appear). [Google Scholar]
  5. P.-A. Coquelin, R. Deguest and R. Munos, Numerical methods for sensitivity analysis of Feynman-Kac models. Available at, HAL-INRIA Research Report 6710 (2008). [Google Scholar]
  6. D. Crisan, P. Del Moral and T. Lyons, Interacting Particle Systems. Approaximations of the Kushner-Stratonovitch Equation. Adv. Appl. Probab. 31 (1999) 819–838. [CrossRef] [Google Scholar]
  7. P. Del Moral, Feynman-Kac formulae. Genealogical and interacting particle systems with applications. Probability and its Applications, Springer Verlag, New York (2004). [Google Scholar]
  8. P. Del Moral and A. Doucet, Particle motions in absorbing medium with hard and soft obstacles. Stoch. Anal. Appl. 22 (2004) 1175–1207. [CrossRef] [MathSciNet] [Google Scholar]
  9. P. Del Moral and L. Miclo, Branching and interacting particle systems approximations of Feynman-Kac formulae with applications to non-linear filtering, in Séminaire de Probabilités XXXIV, Lecture Notes in Math. 1729, Springer, Berlin (2000) 1–145. [Google Scholar]
  10. P. Del Moral and L. Miclo, Particle approximations of Lyapunov exponents connected to Schroedinger operators and Feynman-Kac semigroups. ESAIM: PS 7 (2003) 171–208. [CrossRef] [EDP Sciences] [Google Scholar]
  11. P. Del Moral and E. Rio, Concentration inequalities for mean field particle models. Available at, HAL-INRIA Research Report 6901 (2009). [Google Scholar]
  12. P. Del Moral, J. Jacod and P. Protter, The Monte Carlo Method for filtering with discrete-time observations. Probab. Theory Relat. Fields 120 (2001) 346–368. [Google Scholar]
  13. P. Del Moral, A. Doucet and S.S. Singh, Forward smoothing using sequential Monte Carlo. Cambridge University Engineering Department, Technical Report CUED/F-INFENG/TR 638 (2009). [Google Scholar]
  14. G.B. Di Masi, M. Pratelli and W.G. Runggaldier, An approximation for the nonlinear filtering problem with error bounds. Stochastics 14 (1985) 247–271. [MathSciNet] [Google Scholar]
  15. R. Douc, A. Garivier, E. Moulines and J. Olsson, On the forward filtering backward smoothing particle approximations of the smoothing distribution in general state spaces models. Technical report, available at arXiv:0904.0316. [Google Scholar]
  16. A. Doucet, N. De Freitas and N. Gordon Eds., Sequential Monte Carlo Methods in Pratice. Statistics for engineering and Information Science, Springer, New York (2001). [Google Scholar]
  17. M. El Makrini, B. Jourdain and T. Lelièvre, Diffusion Monte Carlo method: Numerical analysis in a simple case. ESAIM: M2AN 41 (2007) 189–213. [CrossRef] [EDP Sciences] [Google Scholar]
  18. M. Émery, Stochastic calculus in manifolds. Universitext, Springer-Verlag, Berlin (1989). [Google Scholar]
  19. S.J. Godsill, A. Doucet and M. West, Monte Carlo smoothing for nonlinear time series. J. Am. Stat. Assoc. 99 (2004) 156–168. [CrossRef] [Google Scholar]
  20. N. Ikeda and S. Watanabe, Stochastic differential equations and diffusion processes 24. Second edition, North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam (1989). [Google Scholar]
  21. M. Kac, On distributions of certain Wiener functionals. Trans. Am. Math. Soc. 65 (1949) 1–13. [Google Scholar]
  22. G. Kallianpur and C. Striebel, Stochastic differential equations occurring in the estimation of continuous parameter stochastic processes. Tech. Rep. 103, Department of Statistics, University of Minnesota, Minneapolis (1967). [Google Scholar]
  23. N. Kantas, A. Doucet, S.S. Singh and J.M. Maciejowski, An overview of sequential Monte Carlo methods for parameter estimation in general state-space models, in Proceedings IFAC System Identification (SySid) Meeting, available at (2009). [Google Scholar]
  24. H. Korezlioglu and W.J. Runggaldier, Filtering for nonlinear systems driven by nonwhite noises: an approximating scheme. Stoch. Stoch. Rep. 44 (1983) 65–102. [Google Scholar]
  25. J. Picard, Approximation of the nonlinear filtering problems and order of convergence, in Filtering and control of random processes, Lecture Notes in Control and Inf. Sci. 61, Springer (1984) 219–236. [Google Scholar]
  26. G. Poyiadjis, A. Doucet and S.S. Singh, Sequential Monte Carlo computation of the score and observed information matrix in state-space models with application to parameter estimation. Technical Report CUED/F-INFENG/TR 628, Cambridge University Engineering Department (2009). [Google Scholar]
  27. D. Revuz, Markov chains. North-Holland (1975). [Google Scholar]
  28. M. Rousset, On the control of an interacting particle approximation of Schroedinger ground states. SIAM J. Math. Anal. 38 (2006) 824–844. [CrossRef] [MathSciNet] [Google Scholar]
  29. A.N. Shiryaev, Probability, Graduate Texts in Mathematics 95. Second edition, Springer (1986). [Google Scholar]
  30. D.W. Stroock, Probability Theory: an Analytic View. Cambridge University Press, Cambridge (1994). [Google Scholar]
  31. D.W. Stroock, An Introduction to Markov Processes, Graduate Texts in Mathematics 230. Springer (2005). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you