Free Access
Volume 44, Number 6, November-December 2010
Page(s) 1225 - 1238
Published online 15 April 2010
  1. J. Carr, Applications of Centre Manifold Theory. Springer-Verlag, New York (1981). [Google Scholar]
  2. S. Dai and D.G. Schaeffer, Spectrum of a linearized amplitude equation for alternans in a cardiac fiber. SIAM J. Appl. Math. 69 (2008) 704–719. [CrossRef] [MathSciNet] [Google Scholar]
  3. B. Echebarria and A. Karma, Instability and spatiotemporal dynamics of alternans in paced cardiac tissue. Phys. Rev. Lett. 88 (2002) 208101. [CrossRef] [PubMed] [Google Scholar]
  4. B. Echebarria and A. Karma, Amplitude-equation approach to spatiotemporal dynamics of cardiac alternans. Phys. Rev. E 76 (2007) 051911. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Garfinkel, Y.-H. Kim, O. Voroshilovsky, Z. Qu, J.R. Kil, M.-H. Lee, H.S. Karagueuzian, J.N. Weiss and P.-S. Chen, Preventing ventricular fibrillation by flattening cardiac restitution. Proc. Natl. Acad. Sci. USA 97 (2000) 6061–6066. [CrossRef] [Google Scholar]
  6. R.F. Gilmour Jr. and D.R. Chialvo, Electrical restitution, Critical mass, and the riddle of fibrillation. J. Cardiovasc. Electrophysiol. 10 (1999) 1087–1089. [CrossRef] [PubMed] [Google Scholar]
  7. M. Golubitsky and D.G. Schaeffer, Singularities and Groups in Bifurcation Theory. Springer-Verlag, New York (1985). [Google Scholar]
  8. J. Guckenheimer, On a codimension two bifurcation, in Dynamical Systems and Turbulence, Warwick 1980, Lect. Notes in Mathematics 898, Springer (1981) 99–142. [Google Scholar]
  9. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dyanamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York (1983). [Google Scholar]
  10. M.R. Guevara, G. Ward, A. Shrier and L. Glass, Electrical alternans and period doubling bifurcations, in Proceedings of the 11th Computers in Cardiology Conference, IEEE Computer Society, Los Angeles, USA (1984) 167–170. [Google Scholar]
  11. P. Holmes, Unfolding a degenerate nonlinear oscillator: a codimension two bifurcation, in Nonlinear Dynamics, R.H.G. Helleman Ed., New York Academy of Sciences, New York (1980) 473–488. [Google Scholar]
  12. W.F. Langford, Periodic and steady state interactions lead to tori. SIAM J. Appl. Math. 37 (1979) 22–48. [CrossRef] [MathSciNet] [Google Scholar]
  13. C.C. Mitchell and D.G. Schaeffer, A two-current model for the dynamics of the cardiac membrane. Bull. Math. Biol. 65 (2003) 767–793. [Google Scholar]
  14. D. Noble, A modification of the Hodgkin-Huxley equations applicable to Purkinje fiber actoin and pacemaker potential. J. Physiol. 160 (1962) 317–352. [Google Scholar]
  15. J.B. Nolasco and R.W. Dahlen, A graphic method for the study of alternation in cardiac action potentials. J. Appl. Physiol. 25 (1968) 191–196. [CrossRef] [PubMed] [Google Scholar]
  16. A.V. Panfilov, Spiral breakup as a model of ventricular fibrillation. Chaos 8 (1998) 57–64. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you