Free Access
Issue
ESAIM: M2AN
Volume 44, Number 6, November-December 2010
Page(s) 1193 - 1224
DOI https://doi.org/10.1051/m2an/2010027
Published online 15 April 2010
  1. G. Bell and S. Glasstone, Nuclear Reactor Theory. Van Nostrand, Princeton (1970). [Google Scholar]
  2. C. Berthon, P. Charrier and B. Dubroca, An HLLC scheme to solve the M1 model of radiative transfer in two space dimensions. J. Sci. Comp. 31 (2007) 347–389. [CrossRef] [Google Scholar]
  3. T.A. Brunner, Riemann solvers for time-dependent transport based on the maximum entropy and spherical harmonics closures. Ph.D. Thesis, University of Michigan (2000). [Google Scholar]
  4. C. Buet and B. Despres, Asymptotic preserving and positive schemes for radiation hydrodynamics. J. Comput. Phys. 215 (2006) 717–740. [CrossRef] [MathSciNet] [Google Scholar]
  5. C. Buet and S. Cordier, Asymptotic preserving scheme and numerical methods for radiative hydrodynamic models. C. R. Acad. Sci., Sér. 1 Math. 338 (2004) 951–956. [Google Scholar]
  6. K.M. Case and P.F. Zweifel, Linear Transport Theory. Addison-Wesley Publishing Co., Inc. Reading (1967). [Google Scholar]
  7. S. Chandrasekhar, Radiative transfer. Dover, New York (1960). [Google Scholar]
  8. R. Dautray and J.L. Lions, Analyse mathématique et calcul numérique. Chap. 21, Masson, Paris (1988). [Google Scholar]
  9. J.J. Duderstadt and W.R. Martin, Transport theory. Wiley-Interscience, New York (1979). [Google Scholar]
  10. E.M. Gelbard, Simplified spherical harmonics equations and their use in shielding problems. Technical report WAPD-T-1182, Bettis Atomic Power Laboratory, USA (1961). [Google Scholar]
  11. L. Gosse and G. Toscani, An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations. C. R. Acad. Sci., Sér. 1 Math. 334 (2002) 337–342. [Google Scholar]
  12. L. Gosse and G. Toscani, Space localization and well-balanced schemes for discrete kinetic models in diffusive regimes. SIAM J. Numer. Anal. 41 (2003) 641–658. [CrossRef] [MathSciNet] [Google Scholar]
  13. J.M. Greenberg and A.Y. Leroux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 33 (1996) 1–16. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  14. H.B. Keller, Approximate solutions of transport problems. II. Convergence and applications of the discrete-ordinate method. J. Soc. Indust. Appl. Math. 8 (1960) 43–73. [CrossRef] [MathSciNet] [Google Scholar]
  15. E.W. Larsen, On numerical solutions of transport problems in the diffusion limit. Nucl. Sci. Eng. 83 (1983) 90. [Google Scholar]
  16. E.W. Larsen and J.B. Keller, Asymptotic solution of neutron transport problems for small mean free paths. J. Math. Phys. 15 (1974) 75. [CrossRef] [Google Scholar]
  17. E.W. Larsen, G.C. Pomraning and V.C. Badham, Asymptotic analysis of radiative transfer problems. J. Quant. Spectrosc. Radiat. Transfer 29 (1983) 285. [CrossRef] [Google Scholar]
  18. K.D. Lathrop, Ray effects in discrete ordinates equations. Nucl. Sci. Eng. 32 (1968) 357. [Google Scholar]
  19. C.D. Levermore, Relating Eddington factors to flux limiters. J. Quant. Spec. Rad. Transfer. 31 (1984) 149–160. [NASA ADS] [CrossRef] [Google Scholar]
  20. R. McClarren, J.P. Holloway, T.A. Brunner and T. Melhorn, An implicit Riemann solver for the time-dependent Pn equations, in International Topical Meeting on Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications, American Nuclear Society, Avignon, France (2005). [Google Scholar]
  21. R. McClarren, J.P. Holloway and T.A. Brunner, Establishing an asymptotic diffusion limit for Riemann solvers on the time-dependent Pn equations, in International Topical Meeting on Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications, American Nuclear Society, Avignon, France (2005). [Google Scholar]
  22. R. McClarren, J.P. Holloway and T.A. Brunner, On solutions to the Pn equations for thermal radiative transfer. J. Comput. Phys. 227 (2008) 2864–2885. [CrossRef] [MathSciNet] [Google Scholar]
  23. G.C. Pomraning, Diffusive limits for linear transport equations. Nucl. Sci. Eng. 112 (1992) 239–255. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you