Free Access
Volume 44, Number 6, November-December 2010
Page(s) 1155 - 1191
Published online 23 February 2010
  1. R.A. Adams, Sobolev spaces. Academic Press (1975). [Google Scholar]
  2. G. Allaire, Homogeneization of the Navier-Stokes equations with slip boundary conditions. Comm. Pure Appl. Math. 44 (1991) 605–641. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Azaïez, F. Ben Belgacem, C. Bernardi and N. Chorfi, Spectral discretization of Darcy's equations with pressure dependent porosity. Report 2009-10, Laboratoire Jacques-Louis Lions, France (2009). [Google Scholar]
  4. I. Babuška, The finite element method with Lagrangian multipliers. Numer. Math. 20 (1973) 179–192. [CrossRef] [Google Scholar]
  5. W. Bangerth, R. Hartman and G. Kanschat, deal.II – a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33 (2007) 24. [Google Scholar]
  6. J. Berg and J. Löfström, Interpolation spaces: An introduction, Comprehensive Studies in Mathematics 223. Springer-Verlag (1976). [Google Scholar]
  7. D. Boffi, F. Brezzi, L. Demkowicz, R. Durán, R. Falk and M. Fortin, Mixed finite elements, compatibility conditions, and applications, Lecture Notes in Mathematics 939. Springer-Verlag, Berlin, Germany (2008). [Google Scholar]
  8. S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, Texts in applied mathematics 15. Third edition, Springer-Verlag (2008). [Google Scholar]
  9. F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO Anal. Numér. R2 (1974) 129–151. [Google Scholar]
  10. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics. Springer-Verlag, New York (1991). [Google Scholar]
  11. F. Brezzi, J. Rappaz and P.-A. Raviart, Finite dimensional approximation of nonlinear problems. Part I: Branches of nonsingular solutions. Numer. Math. 36 (1980) 1–25. [CrossRef] [MathSciNet] [Google Scholar]
  12. P.-G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysis II, Finite Element Methods (Part 1), P.G. Ciarlet and J.L. Lions Eds., Amsterdam, North-Holland (1991) 17–351. [Google Scholar]
  13. D. Cioranescu, P. Donato and H.I. Ene, Homogeneization of the Stokes problem with non-homogeneous boundary conditions. Math. Appl. Sci. 19 (1996) 857–881. [Google Scholar]
  14. H. Darcy, Les fontaines publiques de la ville de Dijon. Victor Dalmont, Paris, France (1856). [Google Scholar]
  15. J. Douglas and T. Dupont, A Galerkin method for a nonlinear Dirichlet problem. Math. Comp. 29 (1975) 689–696. [CrossRef] [MathSciNet] [Google Scholar]
  16. H.I. Ene and E. Sanchez-Palencia, Équations et phénomènes de surface pour l'écoulement dans un modèle de milieu poreux. J. Mécanique 14 (1975) 73–108. [Google Scholar]
  17. A. Ern and J.-L. Guermond, Theory and practice of finite elements, Applied Mathematical Sciences 159. Springer-Verlag, New York, USA (2004). [Google Scholar]
  18. G.B. Folland, Real analysis, modern techniques and their applications. Second edition, Wiley Interscience (1999). [Google Scholar]
  19. P. Forchheimer, Wasserbewegung durch Boden. Z. Ver. Deutsh. Ing. 45 (1901) 1782–1788. [Google Scholar]
  20. V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations – Theory and algorithms, Springer Series in Computational Mathematics 5. Springer-Verlag, Berlin, Germany (1986). [Google Scholar]
  21. V. Girault and M.F. Wheeler, Numerical discretization of a Darcy-Forchheimer model. Numer. Math. 110 (2008) 161–198. [CrossRef] [MathSciNet] [Google Scholar]
  22. V. Girault, R. Nochetto and L.R. Scott, Maximum-norm stability of the finite-element Stokes projection. J. Math. Pure. Appl. 84 (2005) 279–330. [Google Scholar]
  23. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics 24. Pitman, Boston, USA (1985). [Google Scholar]
  24. F. Hecht, A. Le Hyaric, O. Pironneau and K. Ohtsuka, Freefem++. Second Edition, Version 2.24-2-2. Laboratoire J.-L. Lions, UPMC, Paris, France (2008). [Google Scholar]
  25. A.Ya. Helemskii, Lectures and exercises on functional analysis, Translations of Mathematical Monographs 233. American Mathematical Society, USA (2006). [Google Scholar]
  26. L.V. Kantorovich and G.P. Akilov, Functional analysis. Third edition, Nauka (1984) [in Russian]. [Google Scholar]
  27. D. Kim and E.J. Park, Primal mixed finite-element approximation of elliptic equations with gradient nonlinearities. Comput. Math. Appl. 51 (2006) 793–804. [CrossRef] [MathSciNet] [Google Scholar]
  28. J.L. Lions and E. Magenes, Problèmes aux Limites non Homogènes et Applications, I. Dunod, Paris, France (1968). [Google Scholar]
  29. E.J. Park, Mixed finite element methods for nonlinear second order elliptic problems. SIAM J. Numer. Anal. 32 (1995) 865–885. [CrossRef] [MathSciNet] [Google Scholar]
  30. S.E. Pastukhova, Substantiation of the Darcy Law for a porous medium with condition of partial adhesion. Sbornik Math. 189 (1998) 1871–1888. [CrossRef] [Google Scholar]
  31. K.R. Rajagopal, On a hierarchy of approximate models for flows of incompressible fluids through porous solids. M3AS 17 (2007) 215–252. [Google Scholar]
  32. J.E. Roberts and J.-M. Thomas, Mixed and Hybrid methods in Handbook of Numerical Analysis II: Finite Element Methods (Part 1), P.G. Ciarlet and J.L. Lions Eds., Amsterdam, North-Holland (1991) 523–639. [Google Scholar]
  33. J. Schöberl and W. Zulehner, Symmetric indefinite preconditioners for saddle point problems with applications to pde-constrained optimization problems. SIAM J. Matrix Anal. Appl. 29 (2007) 752–773. [CrossRef] [MathSciNet] [Google Scholar]
  34. E. Skjetne and J.L. Auriault, Homogeneization of wall-slip gas flow through porous media. Transp. Porous Media 36 (1999) 293–306. [CrossRef] [MathSciNet] [Google Scholar]
  35. L. Tartar, An introduction to Sobolev spaces and interpolation spaces, Lecture Notes of the Unione Matematica Italiana 3. Springer-Verlag, Berlin-Heidelberg (2007). [Google Scholar]
  36. W. Zulehner, Analysis of iterative methods for saddle point problems: a unified approach. Math. Comp. 71 (2001) 479–505. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you