Free Access
Issue
ESAIM: M2AN
Volume 44, Number 6, November-December 2010
Page(s) 1295 - 1317
DOI https://doi.org/10.1051/m2an/2010029
Published online 15 April 2010
  1. M. Artola and M. Cessenat, Diffraction d'une onde électromagnétique par un obstacle borné à permittivité et perméabilité élevées. C. R. Acad. Sci. Paris Sér. I Math. 314 (1992) 349–354. [Google Scholar]
  2. S.N. Chandler-Wilde and P. Monk, Existence, uniqueness, and variational methods for scattering by unbounded rough surfaces. SIAM. J. Math. Anal. 37 (2005) 598–618. [CrossRef] [MathSciNet] [Google Scholar]
  3. S.N. Chandler-Wilde and P. Monk, The pml for rough surface scattering. Appl. Numer. Math. 59 (2009) 2131–2154. [CrossRef] [MathSciNet] [Google Scholar]
  4. S.N. Chandler-Wilde and C.R. Ross, Scattering by rough surfaces: the Dirichlet problem for the Helmholtz equation in a non-locally perturbed half-plane. Math. Meth. Appl. Sci. 19 (1996) 959–976. [CrossRef] [Google Scholar]
  5. S.N. Chandler-Wilde, E. Heinemeyer and R. Potthast, Acoustic scattering by mildly rough surfaces in three dimensions. SIAM J. Appl. Math. 66 (2006) 1002–1026. [CrossRef] [MathSciNet] [Google Scholar]
  6. S.N. Chandler-Wilde, P. Monk and M. Thomas, The mathematics of scattering by unbounded, rough, inhomogeneous layers. J. Comput. Appl. Math. 204 (2007) 549–559. [CrossRef] [MathSciNet] [Google Scholar]
  7. P. Cummings and X. Feng, Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations. Math. Mod. Meth. Appl. Sci. 16 (2006) 139–160. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Duruflé, H. Haddar and P. Joly, Higher order generalized impedance boundary conditions in electromagnetic scattering problems. C. R. Phys. 7 (2006) 533–542. [CrossRef] [Google Scholar]
  9. H. Haddar, P. Joly and H.-M. Nguyen, Generalized impedance boundary conditions for scattering by strongly absorbing obstacles: the scalar case. Math. Mod. Meth. Appl. Sci. 15 (2005) 1273–1300. [CrossRef] [MathSciNet] [Google Scholar]
  10. F. Ihlenburg, Finite element analysis of acoustic scattering. Springer (1998). [Google Scholar]
  11. A. Lechleiter and S. Ritterbusch, A variational method for wave scattering from penetrable rough layers. IMA J. Appl. Math. (2009) doi:10.1093/imamat/hxp040. [Google Scholar]
  12. W. McLean, Strongly Elliptic Systems and Boundary Integral Operators. Cambridge University Press, Cambridge (2000). [Google Scholar]
  13. J.C. Nédélec, Acoustic and electromagnetic equations, Applied Mathematical Sciences 144. Springer-Verlag, Berlin (2001). [Google Scholar]
  14. S.M. Rytov, Calcul du skin-effet par la méthode des perturbations. J. Phys. USSR 2 (1940) 233–242. [Google Scholar]
  15. T.B.A. Senior and J.L. Volakis, Approximate boundary conditions in electromagnetics, IEE Electromagnetic waves series 41. The institution of Electrical Engineers, London (1995). [Google Scholar]
  16. B. Zhang and S.N. Chandler-Wilde, Integral equation methods for scattering by infinite rough surfaces. Math. Meth. Appl. Sci. 26 (2003) 463–488. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you