Free Access
Volume 44, Number 6, November-December 2010
Page(s) 1279 - 1293
Published online 17 March 2010
  1. D. Bouche, J.-M. Ghidaglia and F. Pascal, Error estimate and the geometric corrector for the upwind finite volume method applied to the linear advection equation. SIAM J. Numer. Anal. 43 (2005) 578–603. [CrossRef] [MathSciNet] [Google Scholar]
  2. D. Bouche, J.-M. Ghidaglia and F. Pascal, An optimal a priori error analysis of the finite volume method for linear convection problems, in Finite volumes for complex applications IV, Problems and perspectives , F. Benkhaldoun, D. Ouazar and S. Raghay Eds., Hermes Science publishing, London, UK (2005) 225–236. [Google Scholar]
  3. B. Cockburn, P.-A. Gremaud and J.X. Yang, A priori error estimates for numerical methods for scalar conservation laws. III: Multidimensional flux-splitting monotone schemes on non-cartesian grids. SIAM J. Numer. Anal. 35 (1998) 1775–1803. [CrossRef] [MathSciNet] [Google Scholar]
  4. L. Comtet, Advanced combinatorics – The art of finite and infinite expansions. D. Reidel Publishing Co., Dordrecht, The Netherlands (1974). [Google Scholar]
  5. F. Delarue and F. Lagoutière, Probabilistic analysis of the upwind scheme for transport equations. Arch. Ration. Mech. Anal. (to appear). [Google Scholar]
  6. B. Després, An explicit a priori estimate for a finite volume approximation of linear advection on non-cartesian grids. SIAM J. Numer. Anal. 42 (2004) 484–504. [CrossRef] [MathSciNet] [Google Scholar]
  7. B. Després, Lax theorem and finite volume schemes. Math. Comp. 73 (2004) 1203–1234. [Google Scholar]
  8. G.P. Egorychev, Integral representation and the computation of combinatorial sums, Translations of Mathematical Monographs 59. American Mathematical Society, Providence, USA (1984). [Translated from the Russian by H.H. McFadden, Translation edited by Lev J. Leifman.] [Google Scholar]
  9. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis 7, P.-A. Ciarlet and J.-L. Lions Eds., North-Holland (2000) 713–1020. [Google Scholar]
  10. W. Feller, An introduction to probability theory and its applications I. Third edition, John Wiley & Sons Inc., New York, USA (1968). [Google Scholar]
  11. S. Karlin, A first course in stochastic processes. Academic Press, New York, USA (1966). [Google Scholar]
  12. D. Kröner, Numerical schemes for conservation laws. Wiley-Teubner Series Advances in Numerical Mathematics, Chichester: Wiley (1997). [Google Scholar]
  13. V. Lakshmikantham and D. Trigiante, Theory of difference equations: numerical methods and applications, 2nd edition, Monographs and Textbooks in Pure and Applied Mathematics 251. Marcel Dekker Inc., New York, USA (2002). [Google Scholar]
  14. T.A. Manteuffel and A.B. White, Jr., The numerical solution of second order boundary value problems on nonuniform meshes. Math. Comput. 47 (1986) 511–535. [Google Scholar]
  15. B. Merlet, l and l2 error estimate for a finite volume approximation of linear advection. SIAM J. Numer. Anal. 46 (2009) 124–150. [CrossRef] [Google Scholar]
  16. B. Merlet and J. Vovelle, Error estimate for the finite volume scheme applied to the advection equation. Numer. Math. 106 (2007) 129–155. [CrossRef] [MathSciNet] [Google Scholar]
  17. F. Pascal, On supra-convergence of the finite volume method. ESAIM: Proc. 18 (2007) 38–47. [CrossRef] [EDP Sciences] [Google Scholar]
  18. T.E. Peterson, A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM J. Numer. Anal. 28 (1991) 133–140. [CrossRef] [MathSciNet] [Google Scholar]
  19. M. Renault, Lost (and found) in translation, André's actual method and its application to the generalized ballot problem. Amer. Math. Monthly 115 (2008) 358–363. [MathSciNet] [Google Scholar]
  20. A. Tikhonov and A. Samarskij, Homogeneous difference schemes on non-uniform nets. U.S.S.R. Comput. Math. Math. Phys. 1963 (1964) 927–953. [Google Scholar]
  21. J.-P. Vila and P. Villedieu, Convergence of an explicit finite volume scheme for first order symmetric systems. Numer. Math. 94 (2003) 573–602. [CrossRef] [MathSciNet] [Google Scholar]
  22. J. Vovelle, Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains. Numer. Math. 90 (2002) 563–596. [CrossRef] [MathSciNet] [Google Scholar]
  23. B. Wendroff and A.B. White, Jr., Some supraconvergent schemes for hyperbolic equations on irregular grids, in Nonlinear hyperbolic equations – Theory, computation methods, and applications (Aachen, 1988), Notes Numer. Fluid Mech. 24, Vieweg, Braunschweig, Germany (1989) 671–677. [Google Scholar]
  24. B. Wendroff and A.B. White, Jr., A supraconvergent scheme for nonlinear hyperbolic systems. Comput. Math. Appl. 18 (1989) 761–767. [CrossRef] [MathSciNet] [Google Scholar]
  25. H.S. Wilf, generatingfunctionology. Third edition, A K Peters Ltd., Wellesley, USA (2006). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you