Free Access
Issue
ESAIM: M2AN
Volume 45, Number 1, January-February 2011
Page(s) 1 - 22
DOI https://doi.org/10.1051/m2an/2010037
Published online 24 June 2010
  1. K. Barrailh and D. Lannes, A general framework for diffractive optics and its applications to lasers with large spectrums and short pulses. SIAM J. Math. Anal. 34 (2002) 636–674. [CrossRef] [MathSciNet]
  2. R. Belaouar, T. Colin, G. Gallice and C. Galusinski, Theoretical and numerical study of a quasi-linear Zakharov system describing Landau damping. ESAIM: M2AN 40 (2006) 961–990. [CrossRef] [EDP Sciences]
  3. R.L. Berger, C.H. Still, A. Williams and A.B. Langdon, On the dominant and subdominant behaviour of stimulated Raman and Brillouin scattering driven by nonuniform laser beams. Phys. Plasma 5 (1998) 4337–4356. [CrossRef]
  4. C. Besse, Schéma de relaxation pour l'équation de Schrödinger non linéaire et les systèmes de Davey et Stewartson. C. R. Acad. Sci. Paris. Sér. I Math. 326 (1998) 1427–1432.
  5. R. Carles, Geometrics optics and instability for semi-linear Schrödinger equations. Arch. Ration. Mech. Anal. 183 (2007) 525–553. [CrossRef] [MathSciNet]
  6. M. Colin and T. Colin, On a quasi-linear Zakharov system describing laser-plasma interactions. Diff. Int. Eqs. 17 (2004) 297–330.
  7. M. Colin and T. Colin, A numerical model for the Raman amplification for laser-plasma interactions. J. Comput. Appl. Math. 193 (2006) 535–562. [CrossRef] [MathSciNet]
  8. C.D. Decker, W.B. Mori, T. Katsouleas and D.E. Hinkel, Spatial temporal theory of Raman forward scattering. Phys. Plasma 3 (1996) 1360–1372. [CrossRef]
  9. M. Doumica, F. Duboc, F. Golse and R. Sentis, Simulation of laser beam propagation with a paraxial model in a tilted frame. J. Comput. Phys. 228 (2009) 861–880. [CrossRef] [MathSciNet]
  10. R.T. Glassey, Convergence of an energy-preserving scheme for the Zakharov equation in one space dimension. Math. Comput. 58 (1992) 83–102. [CrossRef] [MathSciNet]
  11. N. Hayashi, P.I. Naumkin and P.-N. Pipolo, Smoothing effects for some derivative nonlinear Schrödinger equations. Discrete Contin. Dyn. Syst. 5 (1999) 685–695. [CrossRef]
  12. W.L. Kruer, The physics of laser plama interactions. Addison-Wesley, New York (1988)
  13. R. Sentis, Mathematical models for laser-plasma interaction. ESAIM: M2AN 39 (2005) 275–318. [CrossRef] [EDP Sciences]
  14. B. Texier, Derivation of the Zakharov equations. Arch. Ration. Mech. Anal. 184 (2007) 121–183. [CrossRef] [MathSciNet]
  15. V.E. Zakharov, S.L. Musher and A.M. Rubenchik, Hamiltonian approach to the description of nonlinear plasma phenomena. Phys. Reports 129 (1985) 285–366. [NASA ADS] [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you