Free Access
Volume 45, Number 1, January-February 2011
Page(s) 1 - 22
Published online 24 June 2010
  1. K. Barrailh and D. Lannes, A general framework for diffractive optics and its applications to lasers with large spectrums and short pulses. SIAM J. Math. Anal. 34 (2002) 636–674. [CrossRef] [MathSciNet] [Google Scholar]
  2. R. Belaouar, T. Colin, G. Gallice and C. Galusinski, Theoretical and numerical study of a quasi-linear Zakharov system describing Landau damping. ESAIM: M2AN 40 (2006) 961–990. [CrossRef] [EDP Sciences] [Google Scholar]
  3. R.L. Berger, C.H. Still, A. Williams and A.B. Langdon, On the dominant and subdominant behaviour of stimulated Raman and Brillouin scattering driven by nonuniform laser beams. Phys. Plasma 5 (1998) 4337–4356. [Google Scholar]
  4. C. Besse, Schéma de relaxation pour l'équation de Schrödinger non linéaire et les systèmes de Davey et Stewartson. C. R. Acad. Sci. Paris. Sér. I Math. 326 (1998) 1427–1432. [Google Scholar]
  5. R. Carles, Geometrics optics and instability for semi-linear Schrödinger equations. Arch. Ration. Mech. Anal. 183 (2007) 525–553. [Google Scholar]
  6. M. Colin and T. Colin, On a quasi-linear Zakharov system describing laser-plasma interactions. Diff. Int. Eqs. 17 (2004) 297–330. [Google Scholar]
  7. M. Colin and T. Colin, A numerical model for the Raman amplification for laser-plasma interactions. J. Comput. Appl. Math. 193 (2006) 535–562. [CrossRef] [MathSciNet] [Google Scholar]
  8. C.D. Decker, W.B. Mori, T. Katsouleas and D.E. Hinkel, Spatial temporal theory of Raman forward scattering. Phys. Plasma 3 (1996) 1360–1372. [CrossRef] [Google Scholar]
  9. M. Doumica, F. Duboc, F. Golse and R. Sentis, Simulation of laser beam propagation with a paraxial model in a tilted frame. J. Comput. Phys. 228 (2009) 861–880. [CrossRef] [MathSciNet] [Google Scholar]
  10. R.T. Glassey, Convergence of an energy-preserving scheme for the Zakharov equation in one space dimension. Math. Comput. 58 (1992) 83–102. [CrossRef] [MathSciNet] [Google Scholar]
  11. N. Hayashi, P.I. Naumkin and P.-N. Pipolo, Smoothing effects for some derivative nonlinear Schrödinger equations. Discrete Contin. Dyn. Syst. 5 (1999) 685–695. [CrossRef] [Google Scholar]
  12. W.L. Kruer, The physics of laser plama interactions. Addison-Wesley, New York (1988) [Google Scholar]
  13. R. Sentis, Mathematical models for laser-plasma interaction. ESAIM: M2AN 39 (2005) 275–318. [CrossRef] [EDP Sciences] [Google Scholar]
  14. B. Texier, Derivation of the Zakharov equations. Arch. Ration. Mech. Anal. 184 (2007) 121–183. [CrossRef] [MathSciNet] [Google Scholar]
  15. V.E. Zakharov, S.L. Musher and A.M. Rubenchik, Hamiltonian approach to the description of nonlinear plasma phenomena. Phys. Reports 129 (1985) 285–366. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you