Free Access
Issue
ESAIM: M2AN
Volume 45, Number 1, January-February 2011
Page(s) 169 - 200
DOI https://doi.org/10.1051/m2an/2010036
Published online 24 June 2010
  1. E. Audusse, A multilayer Saint-Venant system: Derivation and numerical validation. Discrete Contin. Dyn. Syst. Ser. B 5 (2005) 189–214. [CrossRef] [MathSciNet] [Google Scholar]
  2. E. Audusse and M.O. Bristeau, Transport of pollutant in shallow water flows: A two time steps kinetic method. ESAIM: M2AN 37 (2003) 389–416. [CrossRef] [EDP Sciences] [Google Scholar]
  3. E. Audusse and M.O. Bristeau, A well-balanced positivity preserving second-order scheme for shallow water flows on unstructured meshes. J. Comput. Phys. 206 (2005) 311–333. [CrossRef] [MathSciNet] [Google Scholar]
  4. E. Audusse and M.O. Bristeau, Finite-volume solvers for a multilayer Saint-Venant system. Int. J. Appl. Math. Comput. Sci. 17 (2007) 311–319. [CrossRef] [MathSciNet] [Google Scholar]
  5. E. Audusse, F. Bouchut, M.O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for Shallow Water flows. SIAM J. Sci. Comput. 25 (2004) 2050–2065. [CrossRef] [MathSciNet] [Google Scholar]
  6. E. Audusse, M.O. Bristeau and A. Decoene, Numerical simulations of 3d free surface flows by a multilayer Saint-Venant model. Int. J. Numer. Methods Fluids 56 (2008) 331–350. [CrossRef] [Google Scholar]
  7. A.J.C. Barré de Saint-Venant, Théorie du mouvement non permanent des eaux avec applications aux crues des rivières et à l'introduction des marées dans leur lit. C. R. Acad. Sci. Paris 73 (1871) 147–154. [Google Scholar]
  8. F. Bouchut, An introduction to finite volume methods for hyperbolic conservation laws. ESAIM: Proc. 15 (2004) 107–127. [Google Scholar]
  9. F. Bouchut and T. Morales de Luna, An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment. ESAIM: M2AN 42 (2008) 683–698. [CrossRef] [EDP Sciences] [Google Scholar]
  10. F. Bouchut and M. Westdickenberg, Gravity driven shallow water models for arbitrary topography. Commun. Math. Sci. 2 (2004) 359–389. [Google Scholar]
  11. M.O. Bristeau and J. Sainte-Marie, Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems. Discrete Contin. Dyn. Syst. Ser. B 10 (2008) 733–759. [Google Scholar]
  12. M.J. Castro, J.A. García-Rodríguez, J.M. González-Vida, J. Macías, C. Parés and M.E. Vázquez-Cendón, Numerical simulation of two-layer shallow water flows through channels with irregular geometry. J. Comput. Phys. 195 (2004) 202–235. [Google Scholar]
  13. M.J. Castro, J. Macías and C. Parés, A q-scheme for a class of systems of coupled conservation laws with source term. application to a two-layer 1-D shallow water system. ESAIM: M2AN 35 (2001) 107–127. [CrossRef] [EDP Sciences] [Google Scholar]
  14. A. Decoene and J.-F. Gerbeau, Sigma transformation and ALE formulation for three-dimensional free surface flows. Int. J. Numer. Methods Fluids 59 (2009) 357–386. [CrossRef] [Google Scholar]
  15. A. Decoene, L. Bonaventura, E. Miglio and F. Saleri, Asymptotic derivation of the section-averaged shallow water equations for river hydraulics. M3AS 19 (2009) 387–417. [Google Scholar]
  16. S. Ferrari and F. Saleri, A new two-dimensional Shallow Water model including pressure effects and slow varying bottom topography. ESAIM: M2AN 38 (2004) 211–234. [CrossRef] [EDP Sciences] [Google Scholar]
  17. FreeFem++ home page, http://www.freefem.org/ff++/index.htm (2009). [Google Scholar]
  18. J.-F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar shallow water; Numerical validation. Discrete Contin. Dyn. Syst. Ser. B 1 (2001) 89–102. [Google Scholar]
  19. P.L. Lions, Mathematical Topics in Fluid Mechanics, Incompressible models, Vol. 1. Oxford University Press, UK (1996). [Google Scholar]
  20. F. Marche, Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects. Eur. J. Mech. B, Fluids 26 (2007) 49–63. [Google Scholar]
  21. B. Mohammadi, O. Pironneau and F. Valentin, Rough boundaries and wall laws. Int. J. Numer. Methods Fluids 27 (1998) 169–177. [CrossRef] [Google Scholar]
  22. O. Nwogu, Alternative form of Boussinesq equations for nearshore wave propagation. J. Waterw. Port Coast. Ocean Eng. ASCE 119 (1993) 618–638. [Google Scholar]
  23. D.H. Peregrine, Long waves on a beach. J. Fluid Mech. 27 (1967) 815–827. [CrossRef] [Google Scholar]
  24. B. Perthame, Kinetic formulation of conservation laws. Oxford University Press, UK (2002). [Google Scholar]
  25. B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38 (2001) 201–231. [CrossRef] [MathSciNet] [Google Scholar]
  26. M.J. Salençon and J.M. Thébault, Simulation model of a mesotrophic reservoir (Lac de Pareloup, France): Melodia, an ecosystem reservoir management model. Ecol. model. 84 (1996) 163–187. [CrossRef] [Google Scholar]
  27. N.J. Shankar, H.F. Cheong and S. Sankaranarayanan, Multilevel finite-difference model for three-dimensional hydrodynamic circulation. Ocean Eng. 24 (1997) 785–816. [CrossRef] [Google Scholar]
  28. F. Ursell, The long wave paradox in the theory of gravity waves. Proc. Cambridge Phil. Soc. 49 (1953) 685–694. [CrossRef] [Google Scholar]
  29. M.A. Walkley, A numerical Method for Extended Boussinesq Shallow-Water Wave Equations. Ph.D. Thesis, University of Leeds, UK (1999). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you