Free Access
Issue
ESAIM: M2AN
Volume 45, Number 1, January-February 2011
Page(s) 115 - 143
DOI https://doi.org/10.1051/m2an/2010034
Published online 10 May 2010
  1. D.N. Arnold, D. Boffi, R.S. Falk and L. Gastaldi, Finite element approximation on quadrilateral meshes. Comm. Num. Meth. Eng. 17 (2001) 805–812. [CrossRef]
  2. D.N. Arnold, D. Boffi and R.S. Falk, Approximation by quadrilateral finite elements. Math. Comp. 71 (2002) 909–922. [CrossRef] [MathSciNet]
  3. D.N. Arnold, D. Boffi and R.S. Falk, Quadrilateral H(div) finite elements. SIAM J. Numer. Anal. 42 (2005) 2429–2451. [CrossRef] [MathSciNet]
  4. I. Babuška and A.K. Aziz, Survey lectures on the mathematical foundations of the finite element method, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Proc. Sympos., Univ. Maryland, Baltimore, Md. Academic Press, New York (1972) 1–359.
  5. A. Bermúdez, P. Gamallo, M.R. Nogeiras and R. Rodríguez, Approximation properties of lowest-order hexahedral Raviart-Thomas elements. C. R. Acad. Sci. Paris, Sér. I 340 (2005) 687–692.
  6. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer, New York (1994).
  7. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer, New York (1991).
  8. F. Dubois, Discrete vector potential representation of a divergence free vector field in three dimensional domains: Numerical analysis of a model problem. SINUM 27 (1990) 1103–1142.
  9. T. Dupont and R. Scott, Polynomial Approximation of Functions in Sobolev Spaces. Math. Comp. 34 (1980) 441–463. [CrossRef] [MathSciNet]
  10. P. Gatto, Elementi finiti su mesh di esaedri distorti per l'approssimazione di H(div) [Approximation of H(div) via finite elements over meshes of distorted hexahedra]. Master's Thesis, Dipartimento di Matematica, Università Pavia, Italy (2006).
  11. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer Series in Computational Mathematics 5. Springer-Verlag, Berlin (1986).
  12. R.L. Naff, T.F. Russell and J.D. Wilson, Shape Functions for Velocity Interpolation in General Hexahedral Cells. Comput. Geosci. 6 (2002) 285–314. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  13. T.F. Russell, C.I. Heberton, L.F. Konikow and G.Z. Hornberger, A finite-volume ELLAM for three-dimensional solute-transport modeling. Ground Water 41 (2003) 258–272. [CrossRef] [PubMed]
  14. P. Šolín, K. Segeth and I. Doležel, Higher Order Finite Elements Methods, Studies in Advanced Mathematics. Chapman & Hall/CRC, Boca Raton (2004).
  15. S. Zhang, On the nested refinement of quadrilateral and hexahedral finite elements and the affine approximation. Numer. Math. 98 (2004) 559–579. [MathSciNet]
  16. S. Zhang, Invertible Jacobian for hexahedral finite elements. Part 1. Bijectivity. Preprint available at http://www.math.udel.edu/ szhang/research/p/bijective1.ps (2005).
  17. S. Zhang, Invertible Jacobian for hexahedral finite elements. Part 2. Global positivity. Preprint available at http://www.math.udel.edu/ szhang/research/p/bijective2.ps (2005).
  18. S. Zhang, Subtetrahedral test for the positive Jacobian of hexahedral elements. Preprint available at http://www.math.udel.edu/ szhang/research/p/subtettest.pdf (2005).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you