Free Access
Volume 45, Number 1, January-February 2011
Page(s) 145 - 168
Published online 24 June 2010
  1. N. Bellomo and C. Dogbe, On the modelling crowd dynamics from scalling to hyperbolic macroscopic models. Math. Mod. Meth. Appl. Sci. 18 (2008) 1317–1345. [CrossRef] [Google Scholar]
  2. F. Bernicot and J. Venel, Existence of sweeping process in Banach spaces under directional prox-regularity. J. Convex Anal. 17 (2010) 451–484. [MathSciNet] [Google Scholar]
  3. V. Blue and J.L. Adler, Cellular automata microsimulation for modeling bi-directional pedestrian walkways. Transp. Res. B 35 (2001) 293–312. [CrossRef] [Google Scholar]
  4. A. Borgers and H. Timmermans, City centre entry points, store location patterns and pedestrian route choice behaviour: A microlevel simulation model. Socio-Econ. Plann. Sci. 20 (1986) 25–31. [CrossRef] [Google Scholar]
  5. A. Borgers and H. Timmermans, A model of pedestrian route choice and demand for retail facilities within inner-cityshopping areas. Geogr. Anal. 18 (1986) 115–128. [CrossRef] [Google Scholar]
  6. M. Bounkhel and L. Thibault, On various notions of regularity of sets in nonsmooth analysis. Nonlinear Convex Anal. 48 (2002) 223–246. [Google Scholar]
  7. H. Brezis, Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert. AM, North Holland (1973). [Google Scholar]
  8. C. Burstedde, K. Klauck, A. Schadschneider and J. Zittartz, Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A 295 (2001) 507–525. [Google Scholar]
  9. G. Buttazzo, C. Jimenez and E. Oudet, An optimization problem for mass transportation with congested dynamics. SIAM J. Control Optim. 48 (2009) 1961–1976. [CrossRef] [MathSciNet] [Google Scholar]
  10. P.G. Ciarlet, Introduction à l'analyse numérique matricielle et à l'optimisation. Masson, Paris (1990). [Google Scholar]
  11. F.H. Clarke, R.J. Stern and P.R. Wolenski, Proximal smoothness and the lower-c2 property. J. Convex Anal. 2 (1995) 117–144. [MathSciNet] [Google Scholar]
  12. F.H. Clarke, Y.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory. Springer-Verlag, New York, Inc. (1998). [Google Scholar]
  13. W. Daamen, Modelling passenger flows in public transport facilities. Ph.D. Thesis, Technische Universiteit Delft, The Netherlands (2004). [Google Scholar]
  14. J.A. Delgado, Blaschke's theorem for convex hypersurfaces. J. Diff. Geom. 14 (1979) 489–496. [Google Scholar]
  15. C. Dogbé, On the numerical solutions of second order macroscopic models of pedestrian flows. Comput. Math. Appl. 56 (2008) 1884–1898. [Google Scholar]
  16. J.F. Edmond and L. Thibault, Relaxation of an optimal control problem involving a perturbed sweeping process. Math. Program., Ser. B 104 (2005) 347–373. [Google Scholar]
  17. J.F. Edmond and L. Thibault, BV solutions of nonconvex sweeping process differential inclusion with perturbation. J. Diff. Equ. 226 (2006) 135–179. [Google Scholar]
  18. J.J. Fruin, Design for pedestrians: A level-of-service concept. Highway Research Record 355 (1971) 1–15. [Google Scholar]
  19. S. Gwynne, E.R. Galea, P.J. Lawrence and L. Filippidis, Modelling occupant interaction with fire conditions using the buildingEXODUS evacuation model. Fire Saf. J. 36 (2001) 327–357. [Google Scholar]
  20. D. Helbing, A fluid-dynamic model for the movement of pedestrians. Complex Syst. 6 (1992) 391–415. [Google Scholar]
  21. D. Helbing and P. Molnár, Social force model for pedestrians dynamics. Phys. Rev. E 51 (1995) 4282–4286. [CrossRef] [Google Scholar]
  22. D. Helbing, I.J. Farkas and T. Vicsek, Simulating dynamical features of escape panic. Nature 407 (2000) 487. [CrossRef] [PubMed] [Google Scholar]
  23. L.F. Henderson, The stastitics of crowd fluids. Nature 229 (1971) 381–383. [CrossRef] [PubMed] [Google Scholar]
  24. S.P. Hoogendoorn and P.H.L. Bovy, Gas-kinetic modeling and simulation of pedestrian flows. Transp. Res. Rec. 1710 (2000) 28–36. [CrossRef] [Google Scholar]
  25. S.P. Hoogendoorn and P.H.L. Bovy, Pedestrian route-choice and activity scheduling theory and models. Transp. Res. B 38 (2004) 169–190. [CrossRef] [Google Scholar]
  26. S.P. Hoogendoorn and P.H.L. Bovy, Dynamic user-optimal assignment in continuous time and space. Transp. Res. B 38 (2004) 571–592. [CrossRef] [Google Scholar]
  27. R. Hughes, The flow of large crowds of pedestrians. Math. Comput. Simul. 53 (2000) 367–370. [CrossRef] [Google Scholar]
  28. R. Hughes, A continuum theory for the flow of pedestrians. Transp. Res. B 36 (2002) 507–535. [Google Scholar]
  29. R. Kimmel and J. Sethian, Fast marching methods for computing distance maps and shortest paths. Technical Report 669, CPAM, Univ. of California, Berkeley (1996). [Google Scholar]
  30. A. Kirchner and A. Schadschneider, Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrians dynamics. Physica A 312 (2002) 260–276. [CrossRef] [Google Scholar]
  31. H. Klüpfel and T. Meyer-König, Characteristics of the pedgo software for crowd movement and egress simulation, in Pedestrian and Evacuation Dynamics 2003, E. Galea Ed., University of Greenwich, CMS Press, London (2003) 331–340. [Google Scholar]
  32. A. Lefebvre, Modélisation numérique d'écoulements fluide/particules, Prise en compte des forces de lubrification. Ph.D. Thesis, Université Paris-Sud XI, Faculté des sciences d'Orsay, France (2007). [Google Scholar]
  33. A. Lefebvre, Numerical simulations of gluey particles. ESAIM: M2AN 43 (2009) 53–80. [CrossRef] [EDP Sciences] [Google Scholar]
  34. G.G. Løvås, Modelling and simulation of pedestrian traffic flow. Transp. Res. B 28 (1994) 429–443. [CrossRef] [Google Scholar]
  35. B. Maury and J. Venel, Un modèle de mouvement de foule. ESAIM: Proc. 18 (2007) 143–152. [CrossRef] [EDP Sciences] [Google Scholar]
  36. B. Maury and J. Venel, Handling of contacts on crowd motion simulations, in Trafic and Granular Flow '07, Springer (2009) 171–180. [Google Scholar]
  37. B. Maury, A. Roudneff-Chupin and F. Santambrogio, A macroscopic crowd motion model of gradient flow type. Math. Mod. Meth. Appl. Sci. (to appear). Available at [Google Scholar]
  38. J.J. Moreau, Décomposition orthogonale d'un espace hilbertien selon deux cônes mutuellement polaires. C. R. Acad. Sci., Ser. I 255 (1962) 238–240. [Google Scholar]
  39. J.J. Moreau, Evolution problem associated with a moving convex set in a Hilbert space. J. Diff. Equ. 26 (1977) 347–374. [Google Scholar]
  40. K. Nagel, From particle hopping models to traffic flow theory. Transp. Res. Rec. 1644 (1998) 1–9. [CrossRef] [Google Scholar]
  41. P.D. Navin and R.J. Wheeler, Pedestrian flow characteristics. Traffic Engineering 39 (1969) 31–36. [Google Scholar]
  42. A. Schadschneider, Cellular automaton approach to pedestrian dynamics-theory, in Pedestrian and Evacuation Dynamics, M. Schreckenberg and S.D. Sharma Eds., Springer, Berlin (2001) 75–85. [Google Scholar]
  43. A. Schadschneider, A. Kirchner and K. Nishinari, From ant trails to pedestrian dynamics. Appl. Bionics & Biomechanics 1 (2003) 11–19. [CrossRef] [Google Scholar]
  44. G.K. Still, New computer system can predict human behavior response to building fires. Fire 84 (1993) 40–41. [Google Scholar]
  45. J. Venel, Modélisation mathématique et numérique des mouvements de foule. Ph.D. Thesis, Université Paris-Sud XI, France, available at: (2008). [Google Scholar]
  46. J. Venel, Integrating strategies in numerical modelling of crowd motion, in Pedestrian and Evacuation Dynamics '08, W.W.F. Klingsch, C. Rogsch, A. Schadschneider and M. Schreckenberg Eds., Springer, Berlin Heidelberg (2010) 641–646. [Google Scholar]
  47. J. Venel, Numerical scheme for a whole class of sweeping process. Available at: (submitted). [Google Scholar]
  48. U. Weidmann, Transporttechnik der fussgaenger. Technical Report 90, Schriftenreihe des Instituts für Verkehrsplanung, Transporttechnik, Strassen-und Eisenbahnbau, ETH Zürich, Switzerland (1993). [Google Scholar]
  49. S.J. Yuhaski and J.M. Macgregor Smith, Modelling circulation systems in buildings using state dependent queueing models. Queue. Syst. 4 (1989) 319–338. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you