Free Access
Volume 45, Number 4, July-August 2011
Page(s) 761 - 778
Published online 21 February 2011
  1. G.D. Akrivis and V.A. Dougalis, On a class of conservative, highly accurate Galerkin methods for the Schrödinger equation. RAIRO Modél. Math. Anal. Numér. 25 (1991) 643–670. [MathSciNet] [Google Scholar]
  2. G. Akrivis, Ch. Makridakis and R.H. Nochetto, A posteriori error estimates for the Crank-Nicolson method for parabolic equations. Math. Comput. 75 (2006) 511–531. [Google Scholar]
  3. G. Akrivis, Ch. Makridakis and R.H. Nochetto, Optimal order a posteriori error estimates for a class of Runge-Kutta and Galerkin methods. Numer. Math. 114 (2009) 133–160. [CrossRef] [MathSciNet] [Google Scholar]
  4. R. Anton, Strichartz inequalities for Lipschitz metrics on manifolds and nonlinear Schrödinger equation on domains. Bull. Soc. Math. France 136 (2008) 27–65. [MathSciNet] [Google Scholar]
  5. D. Bohm, Quantum Theory. Dover Publications, New York (1979). [Google Scholar]
  6. A. Brocéhn, Galerkin methods for approximation of solutions of second order partial differential equations of Schrödinger type. Ph.D. thesis, University of Göteborg (1980). [Google Scholar]
  7. R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology 5, Evolution Problems I. Second edition, Springer-Verlag, Berlin (2000). [Google Scholar]
  8. W. Dörfler, A time-and space-adaptive algorithm for the linear time-dependent Schrödinger equation. Numer. Math. 73 (1996) 419–448. [CrossRef] [MathSciNet] [Google Scholar]
  9. L.C. Evans, Partial Differential Equations. Second edition, American Mathematical Society, Providence (2002). [Google Scholar]
  10. P. Górka, Convergence of logarithmic quantum mechanics to the linear one. Lett. Math. Phys. 81 (2007) 253–264. [CrossRef] [MathSciNet] [Google Scholar]
  11. Th. Katsaounis and I. Kyza, A posteriori error estimates in the L(L2)-norm for Crank-Nicolson fully discrete approximations for linear Schrödinger equations. Preprint. [Google Scholar]
  12. O. Karakashian and Ch. Makridakis, A space-time finite element method for the nonlinear Schrodinger equation: the discontinuous Galerkin method. Math. Comput. 67 (1998) 479–499. [CrossRef] [MathSciNet] [Google Scholar]
  13. O. Karakashian and Ch. Makridakis, A space-time finite element method for the nonlinear Schrodinger equation: the continuous Galerkin method. SIAM J. Numer. Anal. 36 (1999) 1779–1807. [CrossRef] [MathSciNet] [Google Scholar]
  14. I. Kyza, A posteriori error estimates for approximations of semilinear parabolic and Schrödinger-type equations. Ph.D. thesis, University of Crete (2009). [Google Scholar]
  15. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications 2. Dunod, Paris (1968). [Google Scholar]
  16. A. Lozinski, M. Picasso and V. Prachittham, An anisotropic error estimator for the Crank-Nicolson method: Application to a parabolic problem. SIAM J. Sci. Comput. 31 (2009) 2757–2783. [CrossRef] [MathSciNet] [Google Scholar]
  17. Ch. Makridakis, Space and time reconstructions in a posteriori analysis of evolution problems. ESAIM: Proc. 21 (2007) 31–44. [CrossRef] [EDP Sciences] [Google Scholar]
  18. M.O. Scully and M.S. Zubairy, Quantum Optics. Cambridge University Press (2002). [Google Scholar]
  19. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Second edition, Springer-Verlag, Berlin (2006). [Google Scholar]
  20. R. Verfürth, A posteriori error estimates for finite element discretizations of the heat equation. Calcolo 40 (2003) 195–212. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you