Free Access
Issue
ESAIM: M2AN
Volume 45, Number 4, July-August 2011
Page(s) 779 - 802
DOI https://doi.org/10.1051/m2an/2010102
Published online 21 February 2011
  1. I. Babuška and A.K. Aziz, Survey Lectures on the Mathematical Foundations of the Finite Element Method. Academic Press, New York (1972) 3–359. [Google Scholar]
  2. I. Babuska and G.N. Gatica, On the mixed finite element method with Lagrange multipliers. Numer. Methods Partial Differ. Equ. 19 (2003) 192–210. [CrossRef] [MathSciNet] [Google Scholar]
  3. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag (1991). [Google Scholar]
  4. F. Brezzi, W.W. Hager and P.-A. Raviart, Error estimates for the finite element solution of variational inequalities. Numer. Math. 28 (1977) 431–443. [CrossRef] [MathSciNet] [Google Scholar]
  5. C. Carstensen, Interface problem in holonomic elastoplasticity. Math. Methods Appl. Sci. 16 (1993) 819–835. [CrossRef] [MathSciNet] [Google Scholar]
  6. C. Carstensen and J. Gwinner, FEM and BEM coupling for a nonlinear transmission problem with Signorini contact. SIAM J. Numer. Anal. 34 (1997) 1845–1864. [CrossRef] [MathSciNet] [Google Scholar]
  7. R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology 4. Springer (1990). [Google Scholar]
  8. G. Duvaut and J. Lions, Inequalities in Mechanics and Physics. Springer, Berlin (1976). [Google Scholar]
  9. I. Ekeland and R. Temam, Analyse Convexe et Problèmes Variationnels. Études mathématiques, Dunod, Gauthier-Villars, Paris-Bruxelles-Montreal (1974). [Google Scholar]
  10. R.S. Falk, Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28 (1974) 963–971. [CrossRef] [MathSciNet] [Google Scholar]
  11. G. Gatica and W. Wendland, Coupling of mixed finite elements and boundary elements for linear and nonlinear elliptic problems. Appl. Anal. 63 (1996) 39–75. [CrossRef] [MathSciNet] [Google Scholar]
  12. R. Glowinski, J.-L. Lions and R. Trémolières, Numerical Analysis of Variational Inequalities, Studies in Mathematics and its Applications 8. North-Holland Publishing Co., Amsterdam-New York (1981). [Google Scholar]
  13. I. Hlaváček, J. Haslinger, J. Nečas and J. Lovišek, Solution of Variational Inequalities in Mechanics, Applied Mathematical Sciences 66. Springer-Verlag (1988). [Google Scholar]
  14. L. Hörmander, Linear Partial Differential Operators. Springer-Verlag, Berlin (1969). [Google Scholar]
  15. N. Kikuchi and J. Oden, Contact Problems in Elasticity: a Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia (1988). [Google Scholar]
  16. D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications. Academic Press (1980). [Google Scholar]
  17. J. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications I. Springer-Verlag, Berlin (1972). [Google Scholar]
  18. J.E. Roberts and J.M. Thomas, Mixed and Hybrid Methods, in Handbook of Numerical Analysis II, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (1991) 523–639. [Google Scholar]
  19. Z.-H. Zhong, Finite Element Procedures for Contact-Impact Problems. Oxford University Press (1993). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you