Free Access
Volume 45, Number 5, September-October 2011
Page(s) 853 - 872
Published online 23 February 2011
  1. D. Amadori, Initial-boundary value problems for nonlinear systems of conservation laws. NoDEA 4 (1997) 1–42. [CrossRef] [MathSciNet] [Google Scholar]
  2. D. Amadori and R.M. Colombo, Continuous dependence for 2×2 conservation laws with boundary. J. Differ. Equ. 138 (1997) 229–266. [CrossRef] [Google Scholar]
  3. F. Ancona and A. Marson, Scalar non-linear conservation laws with integrable boundary data. Nonlinear Anal. 35 (1999) 687–710. [CrossRef] [MathSciNet] [Google Scholar]
  4. B. Andreianov, P. Goatin and N. Seguin, Finite volume schemes for locally constrained conservation laws. Numer. Math. 115 (2010) 609–645. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Aw and M. Rascle, Resurrection of “second order” models of traffic flow. SIAM J. Appl. Math. 60 (2000) 916–938. [CrossRef] [MathSciNet] [Google Scholar]
  6. C. Bardos, A.Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions. Comm. Partial Differential Equations 4 (1979) 1017–1034. [Google Scholar]
  7. S. Blandin, D. Work, P. Goatin, B. Piccoli and A. Bayen, A general phase transition model for vehicular traffic. SIAM J. Appl. Math. (to appear). [Google Scholar]
  8. A. Bressan, Hyperbolic systems of conservation laws – The one-dimensional Cauchy problem,Oxford Lecture Series in Mathematics and its Applications 20. Oxford University Press, Oxford (2000). [Google Scholar]
  9. W. Chen, S.C. Wong, C.W. Shu and P. Zhang, Front tracking algorithm for the Lighthill-Whitham-Richards traffic flow model with a piecewise quadratic, continuous, non-smooth and non-concave fundamental diagram. Int. J. Numer. Anal. Model. 6 (2009) 562–585. [MathSciNet] [Google Scholar]
  10. R.M. Colombo, Hyperbolic phase transitions in traffic flow. SIAM J. Appl. Math. 63 (2002) 708–721. [CrossRef] [MathSciNet] [Google Scholar]
  11. R.M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint. J. Differ. Equ. 234 (2007) 654–675. [CrossRef] [Google Scholar]
  12. R.M. Colombo and A. Groli, Minimising stop and go waves to optimise traffic flow. Appl. Math. Lett. 17 (2004) 697–701. [CrossRef] [MathSciNet] [Google Scholar]
  13. R.M. Colombo, P. Goatin, G. Maternini and M.D. Rosini, Conservation laws with unilateral constraints in traffic modeling, in Transport Management and Land-Use Effects in Presence of Unusual Demand, L. Mussone and U. Crisalli Eds., Atti del convegno SIDT 2009 (2009). [Google Scholar]
  14. R.M. Colombo, P. Goatin and B. Piccoli, Road networks with phase transitions. J. Hyperbolic Differ. Equ. 7 (2010) 85–106. [CrossRef] [MathSciNet] [Google Scholar]
  15. R.M. Colombo, F. Marcellini and M. Rascle, A 2-phase traffic model based on a speed bound. SIAM J. Appl. Math. 70 (2010) 2652–2666. [CrossRef] [MathSciNet] [Google Scholar]
  16. C.M. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law. J. Math. Anal. Appl. 38 (1972) 33–41. [CrossRef] [MathSciNet] [Google Scholar]
  17. C. Daganzo, The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory. Transp. Res. B 28B (1994) 269–287. [CrossRef] [Google Scholar]
  18. F. Dubois and P. LeFloch, Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differential Equations 71 (1988) 93–122. [Google Scholar]
  19. P. Goatin, The Aw-Rascle vehicular traffic flow model with phase transitions. Math. Comput. Model. 44 (2006) 287–303. [CrossRef] [Google Scholar]
  20. J. Goodman, Initial Boundary Value Problems for Hyperbolic Systems of Conservation Laws. Ph.D. thesis, California University (1982). [Google Scholar]
  21. H. Greenberg, An analysis of traffic flow. Oper. Res. 7 (1959) 79–85. [CrossRef] [Google Scholar]
  22. B. Greenshields, A study of traffic capacity. Proceedings of the Highway Research Board 14 (1935) 448–477. [Google Scholar]
  23. B. Haut, G. Bastin and Y. Chitour, A macroscopic traffic model for road networks with a representation of the capacity drop phenomenon at the junctions, in Proceedings 16th IFAC World Congress, Prague, Czech Republic, July (2005) Tu-M01-TP/3. [Google Scholar]
  24. D. Helbing, S. Lämmer and J.-P. Lebacque, Self-Organized Control of Irregular or Perturbed Network Traffic, in Optimal Control and Dynamic Games, Advances in Computational Management Science 7, Springer (2005) 239–274. [Google Scholar]
  25. J.C. Herrera and A.M. Bayen, Incorporation of lagrangian measurements in freeway traffic state estimation. Transp. Res. Part B: Methodol. 44 (2010) 460–481. [CrossRef] [Google Scholar]
  26. H. Holden and N.H. Risebro, Front tracking for hyperbolic conservation laws, Applied Mathematical Sciences 152. Springer-Verlag, New York (2002). [Google Scholar]
  27. W.-L. Jin, Continuous kinematic wave models of merging traffic flow. Transp. Res. Part B: Methodol. 44 (2010) 1084–1103. [CrossRef] [Google Scholar]
  28. W.L. Jin and H.M. Zhang, The formation and structure of vehicle clusters in the Payne-Whitham traffic flow model. Transp. Res. B 37 (2003) 207–223. [Google Scholar]
  29. W.L. Jin and H.M. Zhang, On the distribution schemes for determining flows through a merge. Transp. Res. Part B: Methodol. 37 (2003) 521–540. [CrossRef] [Google Scholar]
  30. B.S. Kerner and P. Konhäuser, Cluster effect in initially homogeneous traffic flow. Phys. Rev. E 48 (1993) R2335–R2338. [CrossRef] [Google Scholar]
  31. B.S. Kerner and P. Konhäuser, Structure and parameters of clusters in traffic flow. Phys. Rev. E 50 (1994) 54–83. [CrossRef] [Google Scholar]
  32. B.S. Kerner and H. Rehborn, Experimental features and characteristics of traffic jams. Phys. Rev. E 53 (1996) R1297–R1300. [CrossRef] [Google Scholar]
  33. A. Klar, Kinetic and Macroscopic Traffic Flow Models. School of Computational Mathematics: Computational aspects in kinetic models, XXth edition (2002). [Google Scholar]
  34. S.N. Kružhkov, First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81 (1970) 228–255. [MathSciNet] [Google Scholar]
  35. L. Leclercq, Bounded acceleration close to fixed and moving bottlenecks. Transp. Res. Part B: Methodol. 41 (2007) 309–319. [CrossRef] [Google Scholar]
  36. L. Leclercq, Hybrid approaches to the solutions of the Lighthill-Whitham-Richards model. Transp. Res. Part B: Methodol. 41 (2007) 701–709. [CrossRef] [Google Scholar]
  37. H. Lee, H.-W. Lee and D. Kim, Empirical phase diagram of traffic flow on highways with on-ramps, in Traffic and Granular Flow '99, M.S.D.W.D. Helbing and H.J. Herrmann Eds. (2000). [Google Scholar]
  38. R.J. LeVeque, Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (2002). [Google Scholar]
  39. J. Li, Q. Chen, H. Wang and D. Ni, Analysis of LWR model with fundamental diagram subject to uncertainties, in TRB 88th Annual Meeting Compendium of Papers, number 09-1189 in TRB (2009) 14. [Google Scholar]
  40. M.J. Lighthill and G.B. Whitham, On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. Roy. Soc. London. Ser. A. 229 (1955) 317–345. [Google Scholar]
  41. H.X. Liu, X. Wu, W. Ma and H. Hu, Real-time queue length estimation for congested signalized intersections. Transp. Res. Part C 17 (2009) 412–427. [CrossRef] [Google Scholar]
  42. S. Mammar, J.-P. Lebacque and H.H. Salem, Riemann problem resolution and Godunov scheme for the Aw-Rascle-Zhang model. Transp. Sci. 43 (2009) 531–545. [CrossRef] [Google Scholar]
  43. G. Newell, A simplified theory of kinematic waves in highway traffic, part II. Transp. Res. B 27 B (1993) 289–303. [Google Scholar]
  44. E.Y. Panov, Existence of strong traces for quasi-solutions of multidimensional conservation laws. J. Hyperbolic Differ. Equ. 4 (2007) 729–770. [CrossRef] [MathSciNet] [Google Scholar]
  45. B. Piccoli and M. Garavello, Traffic flow on networks – Conservation laws models, AIMS Series on Applied Mathematics 1. American Institute of Mathematical Sciences (AIMS), Springfield, MO (2006). [Google Scholar]
  46. P.I. Richards, Shock waves on the highway. Oper. Res. 4 (1956) 42–51. [Google Scholar]
  47. D. Serre, Systems of conservation laws 1 & 2. Cambridge University Press, Cambridge (1999). [Google Scholar]
  48. C. Tampere, S. Hoogendoorn and B. van Arem, A behavioural approach to instability, stop & go waves, wide jams and capacity drop, in Proceedings of 16th International Symposium on Transportation and Traffic Theory (ISTTT), Maryland (2005). [Google Scholar]
  49. B. Temple, Global solution of the Cauchy problem for a class of 2×2 nonstrictly hyperbolic conservation laws. Adv. Appl. Math. 3 (1982) 335–375. [Google Scholar]
  50. E. Tomer, L. Safonov, N. Madar and S. Havlin, Optimization of congested traffic by controlling stop-and-go waves. Phys. Rev. E 65 (2002) 4. [Google Scholar]
  51. M. Treiber, A. Hennecke and D. Helbing, Congested traffic states in empirical observations and microscopic simulation. Phys. Rev. E 62 (2000) 1805–1824. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you