Free Access
Issue
ESAIM: M2AN
Volume 45, Number 5, September-October 2011
Page(s) 873 - 899
DOI https://doi.org/10.1051/m2an/2010106
Published online 23 February 2011
  1. R. Alicandro, A. Braides and M. Cicalese, Continuum limits of discrete films with superlinear growth densities. Calc. Var. Par. Diff. Eq. 33 (2008) 267–297. [CrossRef] [Google Scholar]
  2. S. Aubry, The twist map, the extended Frenkel-Kontorova model and the devil's staircase. Physica D 7 (1983) 240–258. [CrossRef] [MathSciNet] [Google Scholar]
  3. X. Blanc, C. Le Bris and P.L. Lions, From molecular models to continuum mechanics. Arch. Rat. Mech. Anal. 164 (2002) 341–381. [CrossRef] [MathSciNet] [Google Scholar]
  4. A. Braides and M. Cicalese, Surface energies in nonconvex discrete systems. Math. Models Meth. Appl. Sci. 17 (2007) 985–1037. [CrossRef] [Google Scholar]
  5. A. Braides and A. DeFranchesi, Homogenisation of multiple integrals. Oxford University Press (1998). [Google Scholar]
  6. A. Braides and M. Gelli, Continuum limits of discrete systems without convexity hypotheses. Math. Mech. Solids 7 (2002) 41–66. [CrossRef] [MathSciNet] [Google Scholar]
  7. A. Braides, M. Solci and E. Vitali, A derivation of linear alastic energies from pair-interaction atomistic systems. Netw. Heterog. Media 9 (2007) 551–567. [Google Scholar]
  8. J. Cahn, J. Mallet-Paret and E. Van Vleck, Travelling wave solutions for systems of ODEs on a two-dimensional spatial lattice. SIAM J. Appl. Math. 59 (1998) 455–493. [CrossRef] [Google Scholar]
  9. M. Charlotte and L. Truskinovsky, Linear elastic chain with a hyper-pre-stress. J. Mech. Phys. Solids 50 (2002) 217–251. [CrossRef] [MathSciNet] [Google Scholar]
  10. W. E and P. Ming, Cauchy-Born rule and the stability of crystalline solids: static problems. Arch. Rat. Mech. Anal. 183 (2005) 241–297. [Google Scholar]
  11. I. Fonseca and S. Müller, A uniqueness proof for the Wulff theorem. Proc. Roy. Soc. Edinburgh Sect. A 119 (1991) 125–136. [MathSciNet] [Google Scholar]
  12. G. Friesecke and F. Theil, Validitity and failure of the Cauchy-Born rule in a two-dimensional mass-spring lattice. J. Nonlinear Sci. 12 (2002) 445–478. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  13. G. Friesecke, R. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Comm. Pure Appl. Math. 55 (2002) 1461–1506. [CrossRef] [MathSciNet] [Google Scholar]
  14. D. Gérard-Varet and N. Masmoudi, Homogenization and boundary layer. Preprint available at www.math.nyu.edu/faculty/masmoudi/homog_Varet3.pdf (2010). [Google Scholar]
  15. P. Lancaster and L. Rodman, Algebraic Riccati Equations. Oxford University Press (1995). [Google Scholar]
  16. J.L. Lions, Some methods in the mathematical analysis of systems and their controls. Science Press, Beijing, Gordon and Breach, New York (1981). [Google Scholar]
  17. J.A. Nitsche, On Korn's second inequality. RAIRO Anal. Numér. 15 (1981) 237–248. [MathSciNet] [Google Scholar]
  18. C. Radin, The ground state for soft disks. J. Stat. Phys. 26 (1981) 367–372. [Google Scholar]
  19. B. Schmidt, A derivation of continuum nonlinear plate theory from atomistic models. Multiscale Mod. Sim. 5 (2006) 664–694. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  20. B. Schmidt, On the passage from atomic to continuum theory for thin films. Arch. Rat. Mech. Anal. 190 (2008) 1–55. [CrossRef] [MathSciNet] [Google Scholar]
  21. B. Schmidt, On the derivation of linear elasticity from atomistic models. Net. Heterog. Media 4 (2009) 789–812. [CrossRef] [Google Scholar]
  22. E. Sonntag, Mathematical Control Theory. Second edition, Springer (1998). [Google Scholar]
  23. L. Tartar, The general theory of homogenization. Springer (2010). [Google Scholar]
  24. F. Theil, A proof of crystallization in a two dimensions. Comm. Math. Phys. 262 (2006) 209–236. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you