Free Access
Issue |
ESAIM: M2AN
Volume 45, Number 6, November-December 2011
|
|
---|---|---|
Page(s) | 1141 - 1161 | |
DOI | https://doi.org/10.1051/m2an/2011010 | |
Published online | 04 July 2011 |
- J.W. Barrett and J.F. Blowey, Finite element approximation of a nonlinear cross-diffusion population model. Numer. Math. 98 (2004) 195–221. [MathSciNet] [Google Scholar]
- G. Beckett, J.A. Mackenzie and M.L. Robertson, A moving mesh finite element method for the solution of two-dimensional Stefan problems. J. Comp. Phys. 168 (2001) 500–518. [CrossRef] [Google Scholar]
- A.E. Berger, H. Brezis and J.C.W. Rogers, A numerical method for solving the problem ut-Δf(u) = 0. RAIRO Anal. Numer. 13 (1979) 297–312. [MathSciNet] [Google Scholar]
- H. Brézis, Analyse Fonctionnelle. Masson (1983). [Google Scholar]
- L. Chen and A. Jüngel, Analysis of a multidimensional parabolic population model with strong cross-diffusion. SIAM J. Math. Anal. 36 (2004) 301–322. [CrossRef] [MathSciNet] [Google Scholar]
- L. Chen and A. Jüngel, Analysis of a parabolic cross-diffusion population model without self-diffusion. J. Differ. Equ. 224 (2006) 39–59. [CrossRef] [Google Scholar]
- G. Galiano, M.L. Garzón and A. Jüngel, Analysis and numerical solution of a nonlinear cross-diffusion system arising in population dynamics. Rev. R. Acad. Cien. Ser. A Mat. 95 (2001) 281–295. [Google Scholar]
- G. Galiano, M.L. Garzón and A. Jüngel, Semi-discretization in time and numerical convergence of solutions of a nonlinear cross-diffusion population model. Numer. Math. 93 (2003) 655–673. [CrossRef] [MathSciNet] [Google Scholar]
- M.E. Gurtin, Some mathematical models for population dynamics that lead to segregation. Quart. Appl. Math. 32 (1974) 1–9. [Google Scholar]
- W. Jäger and J. Kačur, Solution of porous medium type systems by linear approximation schemes. Numer. Math. 60 (1991) 407–427. [MathSciNet] [Google Scholar]
- J. Kačur, A. Handlovičová and M. Kačurová, Solution of nonlinear diffusion problems by linear approximation schemes. SIAM J. Numer. Anal. 30 (1993) 1703–1722. [CrossRef] [MathSciNet] [Google Scholar]
- T. Kadota and K. Kuto, Positive steady states for a prey-predator model with some nonlinear diffusion terms. J. Math. Anal. Appl. 323 (2006) 1387–1401. [Google Scholar]
- E.H. Kerner, Further considerations on the statistical mechanics of biological associations. Bull. Math. Biophys. 21 (1959) 217–255. [Google Scholar]
- E. Magenes, R.H. Nochetto and C. Verdi, Energy error estimates for a linear scheme to approximate nonlinear parabolic problems. Math. Mod. Numer. Anal. 21 (1987) 655–678. [Google Scholar]
- M. Mimura and K. Kawasaki, Spatial segregation in competitive interaction-diffusion equations. J. Math. Biol. 9 (1980) 49–64. [CrossRef] [MathSciNet] [Google Scholar]
- H. Murakawa, Reaction-diffusion system approximation to degenerate parabolic systems. Nonlinearity 20 (2007) 2319–2332. [CrossRef] [MathSciNet] [Google Scholar]
- H. Murakawa, A relation between cross-diffusion and reaction-diffusion. Discrete Contin. Dyn. Syst. S 5 (2012) 147–158. [Google Scholar]
- R.H. Nochetto and C. Verdi, An efficient linear scheme to approximate parabolic free boundary problems: error estimates and implementation. Math. Comput. 51 (1988) 27–53. [Google Scholar]
- R.H. Nochetto and C. Verdi, The combined use of a nonlinear Chernoff formula with a regularization procedure for two-phase Stefan problems. Numer. Funct. Anal. Optim. 9 (1988) 1177–1192. [CrossRef] [Google Scholar]
- R.H. Nochetto, M. Paolini and C. Verdi, An adaptive finite element method for two-phase Stefan problems in two space dimensions. Part I: stability and error estimates. Math. Comput. 57 (1991) 73–108. [Google Scholar]
- R.H. Nochetto, M. Paolini and C. Verdi, A fully discrete adaptive nonlinear Chernoff formula. SIAM J. Numer. Anal. 30 (1993) 991–1014. [CrossRef] [MathSciNet] [Google Scholar]
- R.H. Nochetto, A. Schmidt and C. Verdi, A posteriori error estimation and adaptivity for degenerate parabolic problems. Math. Comput. 69 (1999) 1–24. [Google Scholar]
- P.Y.H. Pang and M.X. Wang, Strategy and stationary pattern in a three-species predator-prey model. J. Differ. Equ. 200 (2004) 245–273. [Google Scholar]
- N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species. J. Theor. Biol. 79 (1979) 83–99. [Google Scholar]
- R. Temam, Navier-Stokes equation theory and numerical analysis. AMS Chelsea Publishing, Providence, RI (2001). [Google Scholar]
- C. Verdi, Numerical aspects of parabolic free boundary and hysteresis problems. Lecture Notes in Mathematics 1584 (1994) 213–284. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.