Free Access
Issue |
ESAIM: M2AN
Volume 45, Number 6, November-December 2011
|
|
---|---|---|
Page(s) | 1115 - 1140 | |
DOI | https://doi.org/10.1051/m2an/2011009 | |
Published online | 28 June 2011 |
- X. Antoine, H. Barucq and L. Vernhet, High-frequency asymptotic analysis of a dissipative transmission problem resulting in generalized impedance boundary conditions. Asymptot. Anal. 26 (2001) 257–283. [MathSciNet] [Google Scholar]
- N. Bartoli and A. Bendali, Robust and high-order effective boundary conditions for perfectly conducting scatterers coated by a thin dielectric layer. IMA J. Appl. Math. 67 (2002) 479–508. [CrossRef] [MathSciNet] [Google Scholar]
- A. Bendali and K. Lemrabet, The effect of a thin coating on the scattering of a time-harmonic wave for the Helmholtz equation. SIAM J. Appl. Math. 6 (1996) 1664–1693. [CrossRef] [MathSciNet] [Google Scholar]
- A. Bendali and K. Lemrabet, Asymptotic analysis of the scattering of a time-harmonic electromagnetic wave by a perfectly conducting metal coated with a thin dielectric shell. Asymptot. Anal. 57 (2008) 199–227. [MathSciNet] [Google Scholar]
- A. Bossavit, Computational Electromagnetism. Variational Formulation, Complementarity, Edge Elements. No. 2 in Academic Press Electromagnetism Series. Academic Press, San Diego (1998). [Google Scholar]
- D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 3th edition. Cambridge University Press (2007). [Google Scholar]
- H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer-Verlag, New York (2010). [Google Scholar]
- G. Caloz, M. Costabel, M. Dauge and G. Vial, Asymptotic expansion of the solution of an interface problem in a polygonal domain with thin layer. Asymptot. Anal. 50 (2006) 121–173. [MathSciNet] [Google Scholar]
- Concepts Development Team. Webpage of Numerical C++ Library Concepts 2. http://www.concepts.math.ethz.ch (2011). [Google Scholar]
- M. Duruflé, H. Haddar and P. Joly, Higher order generalized impedance boundary conditions in electromagnetic scattering problems. C.R. Phys. 7 (2006) 533–542. [CrossRef] [Google Scholar]
- P. Frauenfelder and C. Lage, Concepts – an object-oriented software package for partial differential equations. ESAIM: M2AN 36 (2002) 937–951. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- H. Haddar, P. Joly and H.M. Nguyen, Generalized impedance boundary conditions for scattering by strongly absorbing obstacles: the scalar case. Math. Models Methods Appl. Sci. 15 (2005) 1273–1300. [CrossRef] [MathSciNet] [Google Scholar]
- H. Haddar, P. Joly and H.M. Nguyen, Generalized impedance boundary conditions for scattering by strongly absorbing obstacles: the case of Maxwell s equations. Math. Models Methods Appl. Sci. 18 (2008) 1787–1827. [CrossRef] [MathSciNet] [Google Scholar]
- H. Igarashi, A. Kost and T. Honma, A boundary element analysis of magnetic shielding for electron microscopes. Compel 17 (1998) 585–594. [Google Scholar]
- P. Joly and S. Tordeux, Asymptotic analysis of an approximate model for time harmonic waves in media with thin slots. ESAIM: M2AN 40 (2006) 63–97. [CrossRef] [EDP Sciences] [Google Scholar]
- L. Krähenbühl and D. Muller, Thin layers in electrial engineering. Example of shell models in analysing eddy-currents by boundary and finite element methods. IEEE Trans. Magn. 29 (1993) 1450–1455. [CrossRef] [Google Scholar]
- M.A. Leontovich, On approximate boundary conditions for electromagnetic fields on the surface of highly conducting bodies (in russian). Research in the propagation of radio waves. Moscow, Academy of Sciences (1948) 5–12. [Google Scholar]
- W. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press (2000). [Google Scholar]
- A.M. Miri, N.A. Riegel and C. Meinecke, FE calculation of transient eddy currents in thin conductive sheets using dynamic boundary conditions. Int. J. Numer. Model. 11 (1998) 307–316. [CrossRef] [Google Scholar]
- T. Nakata, N. Takahashi, K. Fujiwara and Y. Shiraki, 3D magnetic field analysis using special elements. IEEE Trans. Magn. 26 (1990) 2379–2381. [CrossRef] [Google Scholar]
- V. Péron and C. Poignard, Approximate transmission conditions for time-harmonic Maxwell equations in a domain with thin layer. Research Report RR-6775, INRIA (2008). [Google Scholar]
- R. Perrussel and C. Poignard, Asymptotic Transmission Conditions for Steady-State Potential in a High Contrast Medium. A Uniform Variational Formulation for Resistive Thin Layers. Research Report RR-7163, INRIA (2010). [Google Scholar]
- K. Schmidt, High-order numerical modeling of highly conductive thin sheets. Ph.D. thesis, ETH Zürich (2008). [Google Scholar]
- K. Schmidt and S. Tordeux, Asymptotic modelling of conductive thin sheets. Z. Angew. Math. Phys. 61 (2010) 603–626. [CrossRef] [MathSciNet] [Google Scholar]
- K. Schmidt, O. Sterz and R. Hiptmair, Estimating the eddy-current modelling error. IEEE Trans. Magn. 44 (2008) 686–689. [CrossRef] [Google Scholar]
- T. Senior and J. Volakis, Approximate Boundary Conditions in Electromagnetics. Institution of Electrical Engineers (1995). [Google Scholar]
- A.N. Shchukin, Propagation of Radio Waves (in Russian). Svyazizdat, Moscow (1940). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.