Free Access
Issue
ESAIM: M2AN
Volume 46, Number 1, January-February 2012
Page(s) 81 - 110
DOI https://doi.org/10.1051/m2an/2011014
Published online 26 July 2011
  1. R. Alicandro and M. Cicalese, A general integral representation result for continuum limits of discrete energies with superlinear growth. SIAM J. Math. Anal. 36 (2004) 1–37. [CrossRef] [MathSciNet] [Google Scholar]
  2. X. Blanc, C. Le Bris and P.-L. Lions, From molecular models to continuum mechanics. Arch. Ration. Mech. Anal. 164 (2002) 341–381. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Born and K. Huang, Dynamical theory of crystal lattices. Oxford Classic Texts in the Physical Sciences. The Clarendon Press Oxford University Press, New York, Reprint of the 1954 original (1988). [Google Scholar]
  4. A. Braides and M.S. Gelli, Continuum limits of discrete systems without convexity hypotheses. Math. Mech. Solids 7 (2002) 41–66. [CrossRef] [MathSciNet] [Google Scholar]
  5. M. Dobson, M. Luskin and C. Ortner, Accuracy of quasicontinuum approximations near instabilities. J. Mech. Phys. Solids 58 (2010) 1741–1757. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Dobson, M. Luskin and C. Ortner, Sharp stability estimates for the force-based quasicontinuum approximation of homogeneous tensile deformation. Multiscale Model. Simul. 8 (2010) 782–802. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  7. W.E and P. Ming, Cauchy–Born rule and the stability of crystalline solids: static problems. Arch. Ration. Mech. Anal. 183 (2007) 241–297. [CrossRef] [MathSciNet] [Google Scholar]
  8. G. Friesecke and F. Theil, Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice. J. Nonlinear Sci. 12 (2002) 445–478. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  9. V.S. Ghutikonda and R.S. Elliott, Stability and elastic properties of the stress-free b2 (cscl-type) crystal for the morse pair potential model. J. Elasticity 92 (2008) 151–186. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Giaquinta, Introduction to regularity theory for nonlinear elliptic systems. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (1993). [Google Scholar]
  11. O. Gonzalez and A.M. Stuart, A first course in continuum mechanics. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2008). [Google Scholar]
  12. C. Kittel, Introduction to Solid State Physics, 7th ed. John Wiley & Sons, New York, Chichester (1996). [Google Scholar]
  13. R. Kress, Linear integral equations, Applied Mathematical Sciences 82. Springer-Verlag, 2nd edition, New York (1999). [Google Scholar]
  14. L.D. Landau and E.M. Lifshitz, Theory of elasticity, Course of Theoretical Physics 7. Translated by J.B. Sykes and W.H. Reid. Pergamon Press, London (1959). [Google Scholar]
  15. X.H. Li and M. Luskin, An analysis of the quasi-nonlocal quasicontinuum approximation of the embedded atom model. arXiv:1008.3628v4. [Google Scholar]
  16. X.H. Li and M. Luskin, A generalized quasi-nonlocal atomistic-to-continuum coupling method with finite range interaction. arXiv:1007.2336. [Google Scholar]
  17. M.R. Murty, Problems in analytic number theory, Graduate Texts in Mathematics 206. Springer, 2nd edition, New York (2008). Readings in Mathematics. [Google Scholar]
  18. C. Ortner, A priori and a posteriori analysis of the quasinonlocal quasicontinuum method in 1D. Math. Comput. 80 (2011) 1265–1285 [CrossRef] [MathSciNet] [Google Scholar]
  19. C. Ortner and E. Süli, Analysis of a quasicontinuum method in one dimension. ESAIM: M2AN 42 (2008) 57–91. [CrossRef] [EDP Sciences] [Google Scholar]
  20. B. Schmidt, A derivation of continuum nonlinear plate theory from atomistic models. Multiscale Model. Simul. 5 (2006) 664–694. [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  21. F. Theil, A proof of crystallization in two dimensions. Commun. Math. Phys. 262 (2006) 209–236. [CrossRef] [MathSciNet] [Google Scholar]
  22. D. Wallace, Thermodynamics of Crystals. Dover Publications, New York (1998). [Google Scholar]
  23. T. Zhu, J. Li, K.J. Van Vliet, S. Ogata, S. Yip and S. Suresh, Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper. J. Mech. Phys. Solids 52 (2004) 691–724. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you