Free Access
Issue
ESAIM: M2AN
Volume 46, Number 1, January-February 2012
Page(s) 111 - 144
DOI https://doi.org/10.1051/m2an/2011016
Published online 24 August 2011
  1. I. Aavatsmark, T. Barkve, Ø. Bøe and T. Mannseth, Discretization on unstructured grids for inhomogeneous, anisotropic media, Part I: Derivation of the methods. SIAM J. Sci. Comput. 19 (1998) 1700–1716. [CrossRef] [MathSciNet] [Google Scholar]
  2. I. Aavatsmark, T. Barkve, Ø. Bøe and T. Mannseth, Discretization on unstructured grids for inhomogeneous, anisotropic media, Part II: Discussion and numerical results. SIAM J. Sci. Comput. 19 (1998) 1717–1736. [CrossRef] [MathSciNet] [Google Scholar]
  3. I. Aavatsmark, G.T. Eigestad, B.T. Mallison and J.M. Nordbotten, A compact multipoint flux approximation method with improved robustness. Numer. Methods Partial Differential Equations 24 (2008) 1329–1360. [Google Scholar]
  4. L. Agélas, D.A. Di Pietro and J. Droniou, The G method for heterogeneous anisotropic diffusion on general meshes. ESAIM: M2AN 44 (2010) 597–625. [Google Scholar]
  5. L. Agélas, D.A. Di Pietro, R. Eymard and R. Masson, An abstract analysis framework for nonconforming approximations of diffusion problems on general meshes. IJFV 7 (2010) 1–29. [Google Scholar]
  6. D.N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742–760. [CrossRef] [MathSciNet] [Google Scholar]
  7. D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749–1779. [CrossRef] [MathSciNet] [Google Scholar]
  8. J.-P. Aubin, Analyse fonctionnelle appliquée. Presses Universitaires de France, Paris (1987). [Google Scholar]
  9. L. Botti and D.A. Di Pietro, A pressure-correction scheme for convection-dominated incompressible flows with discontinuous velocity and continuous pressure. J. Comput. Phys. 230 (2011) 572–585. [CrossRef] [MathSciNet] [Google Scholar]
  10. S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, 3th edition 15. Springer, New York (2008). [Google Scholar]
  11. F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of mimetic finite difference methods for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 45 (2005) 1872–1896. [Google Scholar]
  12. F. Brezzi, K. Lipnikov and V. Simoncini, A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci. 15 (2005) 1533–1553. [CrossRef] [MathSciNet] [Google Scholar]
  13. F. Brezzi, G. Manzini, L.D. Marini, P. Pietra and A. Russo, Discontinuous Galerkin approximations for elliptic problems. Numer. Methods Partial Differential Equations 16 (2000) 365–378. [Google Scholar]
  14. A. Buffa and C. Ortner, Compact embeddings of broken Sobolev spaces and applications. IMA J. Numer. Anal. 4 (2009) 827–855. [CrossRef] [MathSciNet] [Google Scholar]
  15. E. Burman and A. Ern, Continuous interior penalty Formula -finite element methods for advection and advection-diffusion equations. Math. Comp. 76 (2007) 1119–1140. [CrossRef] [MathSciNet] [Google Scholar]
  16. E. Burman and P. Zunino, A domain decomposition method for partial differential equations with non-negative form based on interior penalties. SIAM J. Numer. Anal. 44 (2006) 1612–1638. [CrossRef] [MathSciNet] [Google Scholar]
  17. Y. Cao, R. Helmig and B.I. Wohlmuth, Geometrical interpretation of the multi-point flux approximation L-method. Internat. J. Numer. Methods Fluids 60 (2009) 1173–1199. [CrossRef] [MathSciNet] [Google Scholar]
  18. P.G. Ciarlet, The finite element method for elliptic problems, Classics in Applied Mathematics 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)]. [Google Scholar]
  19. D.A. Di Pietro, Analysis of a discontinuous Galerkin approximation of the Stokes problem based on an artificial compressibility flux. Internat. J. Numer. Methods Fluids 55 (2007) 793–813. [CrossRef] [MathSciNet] [Google Scholar]
  20. D.A. Di Pietro, Cell centered Galerkin methods. C. R. Acad. Sci. Paris, Sér. I 348 (2010) 31–34. [Google Scholar]
  21. D.A. Di Pietro, A compact cell-centered Galerkin method with subgrid stabilization. C. R. Acad. Sci. Paris, Sér. I 349 (2011) 93–98. [Google Scholar]
  22. D.A. Di Pietro and A. Ern, Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations. Math. Comp. 79 (2010) 1303–1330. [CrossRef] [MathSciNet] [Google Scholar]
  23. D.A. Di Pietro and A. Ern, Analysis of a discontinuous Galerkin method for heterogeneous diffusion problems with low-regularity solutions. Numer. Methods Partial Differential Equations (2011). Published online, DOI: 10.1002/num.20675. [Google Scholar]
  24. D.A. Di Pietro and A. Ern, Mathematical aspects of discontinuous Galerkin methods, Mathematics and Applications 69. Springer-Verlag, Berlin (2011). In press. [Google Scholar]
  25. D.A. Di Pietro, A. Ern and J.-L. Guermond, Discontinuous Galerkin methods for anisotropic semi-definite diffusion with advection. SIAM J. Numer. Anal. 46 (2008) 805–831. [CrossRef] [MathSciNet] [Google Scholar]
  26. J. Droniou and R. Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105 (2006) 35–71. [CrossRef] [MathSciNet] [Google Scholar]
  27. J. Droniou, R. Eymard, T. Gallouët and R. Herbin, A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. 20 (2010) 265–295. [CrossRef] [MathSciNet] [Google Scholar]
  28. M.G. Edwards and C.F. Rogers, A flux continuous scheme for the full tensor pressure equation, in Proc. of the 4th European Conf. on the Mathematics of Oil Recovery. D Røros, Norway (1994). [Google Scholar]
  29. M.G. Edwards and C.F. Rogers, Finite volume discretization with imposed flux continuity for the general tensor pressure equation. Comput. Geosci. 2 (1998) 259–290. [CrossRef] [MathSciNet] [Google Scholar]
  30. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, Applied Mathematical Sciences 159. Springer-Verlag, New York, NY (2004). [Google Scholar]
  31. E. Erturk, T.C. Corke and C. Gökçöl, Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Internat. J. Numer. Methods Fluids 48 (2005) 747–774. [Google Scholar]
  32. R. Eymard, Th. Gallouët and R. Herbin, The Finite Volume Method, edited by Ph. Charlet and J.L. Lions. North Holland (2000). [Google Scholar]
  33. R. Eymard, Th. Gallouët and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009–1043. [CrossRef] [MathSciNet] [Google Scholar]
  34. R. Eymard, R. Herbin and J.-C. Latché, Convergence analysis of a colocated finite volume scheme for the incompressible Navier-Stokes equations on general 2D or 3D meshes. SIAM J. Numer. Anal. 45 (2007) 1–36. [CrossRef] [MathSciNet] [Google Scholar]
  35. P. Grisvard, Singularities in Boundary Value Problems. Masson, Paris (1992). [Google Scholar]
  36. B. Heinrich and K. Pietsch, Nitsche type mortaring for some elliptic problem with corner singularities. Computing 68 (2002) 217–238. [CrossRef] [MathSciNet] [Google Scholar]
  37. R. Herbin and F. Hubert, Benchmark on discretization schemes for anisotropic diffusion problems on general grids, in Finite Volumes for Complex Applications V, edited by R. Eymard and J.-M. Hérard. John Wiley & Sons (2008) 659–692. [Google Scholar]
  38. R.B. Kellogg, On the Poisson equation with intersecting interfaces. Appl. Anal. 4 (1974/75) 101–129. Collection of articles dedicated to Nikolai Ivanovich Muskhelishvili. [Google Scholar]
  39. L.S.G. Kovasznay, Laminar flow behind a two-dimensional grid. Proc. Camb. Philos. Soc. 44 (1948) 58–62. [Google Scholar]
  40. S. Nicaise and A.-M. Sändig, General interface problems. I, II. Math. Methods Appl. Sci. 17 (1994) 395–429, 431–450. [Google Scholar]
  41. J. Nitsche, On Dirichlet problems using subspaces with nearly zero boundary conditions, in The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972). Academic Press, New York (1972) 603–627. [Google Scholar]
  42. R. Stenberg, Mortaring by a method of J.A. Nitsche, in Computational Mechanics: New trends and applications, edited by S.R. Idelsohn, E. Oñate and E.N. Dvorkin. Barcelona, Spain (1998) 1–6. Centro Internacional de Métodos Numéricos en Ingeniería. [Google Scholar]
  43. R. Temam, Navier-Stokes Equations, Studies in Mathematics and its Applications 2. North-Holland Publishing Co., Amsterdam, revised edition (1979). Theory and numerical analysis, with an appendix by F. Thomasset. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you