Free Access
Volume 46, Number 2, November-December 2012
Page(s) 291 - 315
Published online 12 October 2011
  1. D.N. Arnold, Discretization by finite element of a model parameter dependent problem. Numer. Math. 37 (1981) 405–421. [CrossRef] [MathSciNet] [Google Scholar]
  2. D.N. Arnold and R.S. Falk, A uniformly accurate finite element method for the Reissner-Mindlin plate. SIAM J. Numer. Anal. 26 (1989) 1276–1290. [CrossRef] [MathSciNet] [Google Scholar]
  3. K. Arunakirinathar and B.D. Reddy, Mixed finite element methods for elastic rods of arbitrary geometry. Numer. Math. 64 (1993) 13–43. [CrossRef] [MathSciNet] [Google Scholar]
  4. K.-J. Bathe, F. Brezzi and S.W. Cho, The MITC7 and MITC9 plate bending elements, Comput. Struct. 32 (1984) 797–814. [Google Scholar]
  5. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag (1991). [Google Scholar]
  6. F. d'Hennezel, Domain decomposition method and elastic multi-structures: the stiffened plate problem. Numer. Math. 66 (1993) 181–197. [CrossRef] [MathSciNet] [Google Scholar]
  7. R.G. Durán and E. Liberman, On the mixed finite element methods for the Reissner-Mindlin plate model. Math. Comput. 58 (1992) 561–573. [Google Scholar]
  8. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Springer-Verlag, New York (2004). [Google Scholar]
  9. R. Falk, Finite element methods for linear elasticity, in Mixed Finite Elements, Compatibility Conditions, and Applications. Springer-Verlag, Berlin, Heidelberg (2006) 159–194. [Google Scholar]
  10. V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin, Heidelberg (1986). [Google Scholar]
  11. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman (1985). [Google Scholar]
  12. T.P. Holopainen, Finite element free vibration analysis of eccentrically stiffened plates. Comput. Struct. 56 (1995) 993–1007. [CrossRef] [Google Scholar]
  13. V. Janowsky, and P. Procházka, The nonconforming finite element method in the problem of clamped plate with ribs. Appl. Math. 21 (1976) 273–289. [Google Scholar]
  14. A. Mukherjee and M. Mukhopadhyay, Finite element free vibration of eccentrically stiffened plates. Comput. Struct. 30 (1988) 1303–1317. [CrossRef] [Google Scholar]
  15. J. O'Leary and I. Harari, Finite element analysis of stiffened plates. Comput. Struct. 21 (1985) 973–985. [CrossRef] [Google Scholar]
  16. P.A. Raviart and J.M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method. Lecture Notes in Mathematics, Springer, Berlin, Heidelberg (1977) 292–315. [Google Scholar]
  17. L. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54 (1990) 483–493. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you