Free Access
Issue |
ESAIM: M2AN
Volume 46, Number 2, November-December 2012
|
|
---|---|---|
Page(s) | 341 - 388 | |
DOI | https://doi.org/10.1051/m2an/2011038 | |
Published online | 24 October 2011 |
- A. Anantharaman and E. Cancès, Existence of minimizers for Kohn-Sham models in quantum chemistry. Ann. Inst. Henri Poincaré 26 (2009) 2425–2455. [Google Scholar]
- R. Benguria, H. Brezis and E.H. Lieb, The Thomas-Fermi-von Weizsäcker theory of atoms and molecules. Comm. Math. Phys. 79 (1981) 167–180. [Google Scholar]
- X. Blanc and E. Cancès, Nonlinear instability of density-independent orbital-free kinetic energy functionals. J. Chem. Phys. 122 (2005) 214–106. [CrossRef] [Google Scholar]
- M. Born and J.R. Oppenheimer, Zur quantentheorie der molekeln. Ann. Phys. 84 (1927) 457–484. [Google Scholar]
- G. Bourdaud and M. Lanza de Cristoforis, Regularity of the symbolic calculus in Besov algebras. Stud. Math. 184 (2008) 271–298. [CrossRef] [Google Scholar]
- E. Cancès, R. Chakir and Y. Maday, Numerical analysis of nonlinear eigenvalue problems. J. Sci. Comput. 45 (2010) 90–117. [Google Scholar]
- E. Cancès, R. Chakir, V. Ehrlacher and Y. Maday, in preparation. [Google Scholar]
- E. Cancès, M. Defranceschi, W. Kutzelnigg, C. Le Bris and Y. Maday, Computational quantum chemistry: a primer, in Handbook of numerical analysis X. North-Holland, Amsterdam (2003) 3–270. [Google Scholar]
- E. Cancès, C. Le Bris and Y. Maday, Méthodes mathématiques en chimie quantique. Springer (2006). [Google Scholar]
- E. Cancès, G. Stoltz, V.N. Staroverov, G.E. Scuseria and E.R. Davidson, Local exchange potentials for electronic structure calculations. MathematicS In Action 2 (2009) 1–42. [CrossRef] [MathSciNet] [Google Scholar]
- C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral methods: fundamentals in single domains. Springer (2006). [Google Scholar]
- I. Catto, C. Le Bris and P.-L. Lions, Mathematical theory of thermodynamic limits: Thomas-Fermi type models. Oxford University Press (1998). [Google Scholar]
- H. Chen, X. Gong, L. He and A. Zhou, Convergence of adaptive finite element approximations for nonlinear eigenvalue problems. arXiv preprint, http://arxiv.org/pdf/1001.2344. [Google Scholar]
- H. Chen, X. Gong and A. Zhou, Numerical approximations of a nonlinear eigenvalue problem and applications to a density functional model. Math. Methods Appl. Sci. 33 (2010) 1723–1742. [CrossRef] [MathSciNet] [Google Scholar]
- R.M. Dreizler and E.K.U. Gross, Density functional theory. Springer (1990). [Google Scholar]
- A. Edelman, T.A. Arias and S.T. Smith, The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20 (1998) 303–353. [CrossRef] [Google Scholar]
- V. Gavini, J. Knap, K. Bhattacharya and M. Ortiz, Non-periodic finite-element formulation of orbital-free density functional theory. J. Mech. Phys. Solids 55 (2007) 669–696. [CrossRef] [MathSciNet] [Google Scholar]
- D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, 3rd edition. Springer (1998). [Google Scholar]
- X. Gonze et al., ABINIT: first-principles approach to material and nanosystem properties. Computer Phys. Comm. 180 (2009) 2582–2615. [CrossRef] [Google Scholar]
- P. Hohenberg and W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136 (1964) B864–B871. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140 (1965) A1133–A1138. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- B. Langwallner, C. Ortner and E. Süli, Existence and convergence results for the Galerkin approximation of an electronic density functional. Math. Mod. Methods Appl. Sci. 20 (2010) 2237–2265. [Google Scholar]
- C. Le Bris, Ph.D. thesis, École Polytechnique (1993). [Google Scholar]
- W.A. Lester Jr. Ed., Recent advances in Quantum Monte Carlo methods. World Sientific (1997). [Google Scholar]
- W.A. Lester Jr., S.M. Rothstein and S. Tanaka Eds., Recent advances in Quantum Monte Carlo methods, Part II, World Sientific (2002). [Google Scholar]
- M. Levy, Universal variational functionals of electron densities, first order density matrices, and natural spin-orbitals and solution of the V-representability problem. Proc. Natl. Acad. Sci. U.S.A. 76 (1979) 6062–6065. [CrossRef] [PubMed] [Google Scholar]
- E.H. Lieb, Thomas-Fermi and related theories of atoms and molecules. Rev. Mod. Phys. 53 (1981) 603–641. [CrossRef] [MathSciNet] [Google Scholar]
- E.H. Lieb, Density Functional for Coulomb systems. Int. J. Quant. Chem. 24 (1983) 243–277. [Google Scholar]
- Y. Maday and G. Turinici, Error bars and quadratically convergent methods for the numerical simulation of the Hartree-Fock equations. Numer. Math. 94 (2003) 739–770. [CrossRef] [MathSciNet] [Google Scholar]
- W. Sickel, Superposition of functions in Sobolev spaces of fractional order. A survey. Banach Center Publ. 27 (1992) 481–497. [Google Scholar]
- P. Suryanarayana, V. Gavini, T. Blesgen, K. Bhattacharya and M. Ortiz, Non-periodic finite-element formulation of Kohn-Sham density functional theory. J. Mech. Phys. Solids 58 (2010) 256–280. [Google Scholar]
- N. Troullier and J.L. Martins, A straightforward method for generating soft transferable pseudopotentials. Solid State Commun. 74 (1990) 613–616. [CrossRef] [Google Scholar]
- S. Valone, Consequences of extending 1matrix energy functionals from purestate representable to all ensemble representable 1 matrices. J. Chem. Phys. 73 (1980) 1344–1349. [CrossRef] [MathSciNet] [Google Scholar]
- Y.A. Wang and E.A. Carter, Orbital-free kinetic energy density functional theory, in Theoretical methods in condensed phase chemistry, Progress in theoretical chemistry and physics 5. Kluwer (2000) 117–184. [Google Scholar]
- A. Zhou, Finite dimensional approximations for the electronic ground state solution of a molecular system. Math. Methods Appl. Sci. 30 (2007) 429–447. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.