Free Access
Issue
ESAIM: M2AN
Volume 46, Number 3, May-June 2012
Special volume in honor of Professor David Gottlieb
Page(s) 515 - 534
DOI https://doi.org/10.1051/m2an/2011054
Published online 11 January 2012
  1. M.S. Alber, R. Camassa, Y.N. Fedorov, D.D. Holm and J.E. Marsden, The complex geometry of weak piecewise smooth solutions of integrable nonlinear PDE’s of shallow water and Dym type. Commun. Math. Phys. 221 (2001) 197–227. [CrossRef] [Google Scholar]
  2. R. Artebrant and H.J. Schroll, Numerical simulation of Camassa-Holm peakons by adaptive upwinding. Appl. Numer. Math. 56 (2006) 695–711. [CrossRef] [Google Scholar]
  3. R. Beals, D.H. Sattinger and J. Szmigielski, Peakon-antipeakon interaction. J. Nonlin. Math. Phys. 8 (2001) 23–27; Nonlinear evolution equations and dynamical systems, Kolimbary (1999). [CrossRef] [Google Scholar]
  4. R. Camassa and D.D. Holm, An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71 (1993) 1661–1664. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  5. R. Camassa, D.D. Holm and J.M. Hyman, A new integrable shallow water equation. Adv. Appl. Mech. 31 (1994) 1–33. [CrossRef] [Google Scholar]
  6. R. Camassa, J. Huang and L. Lee, On a completely integrable numerical scheme for a nonlinear shallow-water wave equation. J. Nonlin. Math. Phys. 12 (2005) 146–162. [CrossRef] [Google Scholar]
  7. R. Camassa, J. Huang and L. Lee, Integral and integrable algorithms for a nonlinear shallow-water wave equation. J. Comput. Phys. 216 (2006) 547–572. [CrossRef] [Google Scholar]
  8. S. Chen, C. Foias, D.D. Holm, E. Olson, E.S. Titi and S. Wynne, Camassa-Holm equations as a closure model for turbulent channel and pipe flow. Phys. Rev. Lett. 81 (1998) 5338–5341. [CrossRef] [MathSciNet] [Google Scholar]
  9. A. Chertock and A. Kurganov, On a practical implementation of particle methods. Appl. Numer. Math. 56 (2006) 1418–1431. [CrossRef] [Google Scholar]
  10. A. Chertock and D. Levy, Particle methods for dispersive equations. J. Comput. Phys. 171 (2001) 708–730. [CrossRef] [Google Scholar]
  11. A. Chertock and D. Levy, A particle method for the KdV equation. J. Sci. Comput. 17 (2002) 491–499. [CrossRef] [Google Scholar]
  12. A.J. Chorin, Numerical study of slightly viscous flow. J. Fluid Mech. 57 (1973) 785–796. [CrossRef] [Google Scholar]
  13. G.M. Coclite, K.H. Karlsen and N.H. Risebro, A convergent finite difference scheme for the Camassa-Holm equation with general H1 initial data. SIAM J. Numer. Anal. 46 (2008) 1554–1579. [CrossRef] [MathSciNet] [Google Scholar]
  14. A. Cohen and B. Perthame, Optimal approximations of transport equations by particle and pseudoparticle methods. SIAM J. Math. Anal. 32 (2000) 616–636 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  15. G.-H. Cottet and P.D. Koumoutsakos, Vortex methods. Cambridge University Press, Cambridge (2000). [Google Scholar]
  16. G.-H. Cottet and S. Mas-Gallic, A particle method to solve transport-diffusion equations, Part 1 : the linear case. Tech. Report 115, Ecole Polytechnique, Palaiseau, France (1983). [Google Scholar]
  17. G.-H. Cottet and S. Mas-Gallic, A particle method to solve the Navier-Stokes system. Numer. Math. 57 (1990) 805–827. [CrossRef] [MathSciNet] [Google Scholar]
  18. P. Degond and S. Mas-Gallic, The weighted particle method for convection-diffusion equations. I. The case of an isotropic viscosity. Math. Comput. 53 (1989) 485–507. [Google Scholar]
  19. P. Degond and S. Mas-Gallic, The weighted particle method for convection-diffusion equations. II. The anisotropic case. Math. Comput. 53 (1989) 509–525. [Google Scholar]
  20. P. Degond and F.-J. Mustieles, A deterministic approximation of diffusion equations using particles. SIAM J. Sci. Statist. Comput. 11 (1990) 293–310. [CrossRef] [MathSciNet] [Google Scholar]
  21. S. Gottlieb, C.-W. Shu and E. Tadmor, High order time discretization methods with the strong stability property. SIAM Rev. 43 (2001) 89–112. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  22. O.-H. Hald, Convergence of vortex methods, Vortex methods and vortex motion. SIAM, Philadelphia, PA (1991) 33–58. [Google Scholar]
  23. A.N. Hirani, J.E. Marsden and J. Arvo, Averaged Template Matching Equations, EMMCVPR, Lecture Notes in Computer Science 2134. Springer (2001) 528–543. [CrossRef] [Google Scholar]
  24. H. Holden and X. Raynaud, Convergence of a finite difference scheme for the Camassa-Holm equation. SIAM J. Numer. Anal. 44 (2006) 1655–1680 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  25. H. Holden and X. Raynaud, A convergent numerical scheme for the Camassa-Holm equation based on multipeakons. Discrete Contin. Dyn. Syst. 14 (2006) 505–523. [MathSciNet] [Google Scholar]
  26. D.D. Holm and J.E. Marsden, Momentum maps and measure-valued solutions (peakons, filaments, and sheets) for the EPDiff equation, The breadth of symplectic and Poisson geometry, Progr. Math. 232. Birkhäuser Boston, Boston, MA (2005) 203–235. [Google Scholar]
  27. D.D. Holm and M.F. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs. SIAM J. Appl. Dyn. Syst. 2 (2003) 323–380 (electronic). [CrossRef] [Google Scholar]
  28. D.D. Holm and M.F. Staley, Interaction dynamics of singular wave fronts, under “Recent Papers” at http://cnls.lanl.gov/~staley/. [Google Scholar]
  29. D.D Holm, J.T. Ratnanather, A. Trouvé and L. Younes, Soliton dynamics in computational anatomy. NeuroImage 23 (2004) S170–S178. [CrossRef] [PubMed] [Google Scholar]
  30. H.-P. Kruse, J. Scheurle and W. Du, A two-dimensional version of the Camassa-Holm equation, Symmetry and perturbation theory. World Sci. Publ., Cala Gonone, River Edge, NJ (2001) 120–127. [Google Scholar]
  31. A.K. Liu, Y.S. Chang, M.-K. Hsu and N.K. Liang, Evolution of nonlinear internal waves in the east and south China Sea. J. Geophys. Res. 103 (1998) 7995–8008. [CrossRef] [Google Scholar]
  32. J.E. Marsden and T.S. Ratiu, Introduction to mechanics and symmetry, Texts in Applied Mathematics 17, 2nd edition. Springer-Verlag, New York (1999). [Google Scholar]
  33. R.I. McLachlan and P. Atela, The accuracy of symplectic integrators. Nonlinearity 5 (1992) 541–562. [CrossRef] [Google Scholar]
  34. R. McLachlan and S. Marsland, N-particle dynamics of the Euler equations for planar diffeomorfism. Dyn. Syst. 22 (2007) 269–290. [CrossRef] [MathSciNet] [Google Scholar]
  35. P.-A. Raviart, An analysis of particle methods. Numerical methods in fluid dynamics (Como, 1983), Lecture Notes in Math. 1127. Springer, Berlin (1985) 243–324. [Google Scholar]
  36. G.D. Rocca, M.C. Lombardo, M. Sammartino and V. Sciacca, Singularity tracking for Camassa-Holm and Prandtl’s equations. Appl. Numer. Math. 56 (2006) 1108–1122. [CrossRef] [Google Scholar]
  37. S.F. Singer, Symmetry in mechanics : A gentle, modern introduction. Birkhäuser Boston Inc., Boston, MA (2001). [Google Scholar]
  38. Y. Xu and C.-W. Shu, A local discontinuous Galerkin method for the Camassa-Holm equation. SIAM J. Numer. Anal. 46 (2008) 1998–2021. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you