Free Access
Issue
ESAIM: M2AN
Volume 46, Number 3, May-June 2012
Special volume in honor of Professor David Gottlieb
Page(s) 605 - 618
DOI https://doi.org/10.1051/m2an/2011057
Published online 11 January 2012
  1. R.F. Bass and K. Gröchenig, Random sampling of multivariate trigonometric polynomials. SIAM J. Math. Anal. 36 (2005) 773–795. [CrossRef]
  2. J.J. Benedetto, A.M. Powell and Ö. Yılmaz, Sigma-delta (ΣΔ) quantization and finite frames. IEEE Trans. Inf. Theory 52 (2006) 1990–2005. [CrossRef]
  3. I. Daubechies and R. DeVore, Reconstructing a bandlimited function from very coarsely quantized data : A family of stable sigma-delta modulators of arbitrary order. Ann. Math. 158 (2003) 679–710. [CrossRef]
  4. H.A. David and H.N. Nagarja, Order Statistics, 3th edition. John Wiley & Sons, Hoboken, NJ (2003).
  5. L. Devroye, Laws of the iterated logarithm for order statistics of uniform spacings. Ann. Probab. 9 (1981) 860–867. [CrossRef] [MathSciNet]
  6. R. Gervais, Q.I. Rahman and G. Schmeisser, A bandlimited function simulating a duration-limited one, in Anniversary volume on approximation theory and functional analysis (Oberwolfach, 1983), Internationale Schriftenreihe zur Numerischen Mathematik 65. Birkhäuser, Basel (1984) 355–362.
  7. C.S. Güntürk, Approximating a bandlimited function using very coarsely quantized data : improved error estimates in sigma-delta modulation. J. Amer. Math. Soc. 17 (2004) 229–242. [CrossRef] [MathSciNet]
  8. S. Huestis, Optimum kernels for oversampled signals. J. Acoust. Soc. Amer. 92 (1992) 1172–1173. [CrossRef]
  9. S. Kunis and H. Rauhut, Random sampling of sparse trigonometric polynomials II. orthogonal matching pursuit versus basis pursuit. Found. Comput. Math. 8 (2008) 737–763. [CrossRef] [MathSciNet]
  10. F. Natterer, Efficient evaluation of oversampled functions. J. Comput. Appl. Math. 14 (1986) 303–309. [CrossRef]
  11. R.A. Niland, Optimum oversampling. J. Acoust. Soc. Amer. 86 (1989) 1805–1812. [CrossRef] [MathSciNet]
  12. E. Slud, Entropy and maximal spacings for random partitions. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 41 (1977/78) 341–352. [CrossRef]
  13. T. Strohmer and J. Tanner, Fast reconstruction methods for bandlimited functions from periodic nonuniform sampling. SIAM J. Numer. Anal. 44 (2006) 1073–1094. [CrossRef]
  14. C. Vogel and H. Johansson, Time-interleaved analog-to-digital converters : Status and future directions. Proceedings of the 2006 IEEE International Symposium on Circuits and Systems (ISCAS) (2006) 3386–3389.
  15. J. Xu and T. Strohmer, Efficient calibration of time-interleaved adcs via separable nonlinear least squares. Technical Report, Dept. of Mathematics, University of California at Davis. http://www.math.ucdavis.edu/-strotimer/papers/2006/adc.pdf
  16. Ö. Yılmaz, Coarse quantization of highly redundant time-frequency representations of square-integrable functions. Appl. Comput. Harmonic Anal. 14 (2003) 107–132. [CrossRef]
  17. A.I. Zayed, Advances in Shannon’s sampling theory. CRC Press, Boca Raton (1993).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you