Free Access
Issue
ESAIM: M2AN
Volume 46, Number 3, May-June 2012
Special volume in honor of Professor David Gottlieb
Page(s) 619 - 646
DOI https://doi.org/10.1051/m2an/2011058
Published online 11 January 2012
  1. C. Cao and E.S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. Math. 166 (2007) 245–267. [CrossRef] [Google Scholar]
  2. Q. Chen, J. Laminie, A. Rousseau, R. Temam and J. Tribbia, A 2.5D model for the equations of the ocean and the atmosphere. Anal. Appl. (Singap.) 5 (2007) 199–229. [CrossRef] [MathSciNet] [Google Scholar]
  3. Q. Chen, R. Temam and J.J. Tribbia, Simulations of the 2.5D inviscid primitive equations in a limited domain. J. Comput. Phys. 227 (2008) 9865–9884. [CrossRef] [Google Scholar]
  4. Q. Chen, M.-C. Shiue and R. Temam, The barotropic mode for the primitive equations. J. Sci. Comput. 45 (2010) 167-199. [CrossRef] [Google Scholar]
  5. A.J. Chorin, Numerical solution of the Navier-Stokes equations. Math. Comput. 22 (1968) 745–762. [CrossRef] [MathSciNet] [Google Scholar]
  6. B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves. Math. Comp. 31 (1977) 629–651. [CrossRef] [MathSciNet] [Google Scholar]
  7. D. Givoli and B. Neta, High-order nonreflecting boundary conditions for the dispersive shallow water equations. J. Comput. Appl. Math. 158 (2003) 49–60; Selected papers from the Conference on Computational and Mathematical Methods for Science and Engineering, Alicante (2002). [CrossRef] [Google Scholar]
  8. J.L. Guermond, P. Minev and J. Shen, An overview of projection methods for incompressible flow. Comput. Methods Appl. Mech. Engrg. 195 (2006) 6011–6045. [CrossRef] [MathSciNet] [Google Scholar]
  9. R.L. Higdon, Absorbing boundary conditions for difference approximations to the multidimensional wave equation. Math. Comput. 47 (1986) 437–459. [Google Scholar]
  10. G. Kobelkov, Existence of a solution ‘in the large’ for the 3D large-scale ocean dynamics equations. C. R. Math. Acad. Sci. Paris 343 (2006) 283–286. [CrossRef] [MathSciNet] [Google Scholar]
  11. G.M. Kobelkov, Existence of a solution “in the large” for ocean dynamics equations. J. Math. Fluid Mech. 9 (2007) 588–610. [CrossRef] [MathSciNet] [Google Scholar]
  12. J.L. Lions, R. Temam and S.H. Wang, New formulations of the primitive equations of atmosphere and applications. Nonlinearity 5 (1992) 237–288. [CrossRef] [MathSciNet] [Google Scholar]
  13. J.L. Lions, R. Temam and S.H. Wang, On the equations of the large-scale ocean. Nonlinearity 5 (1992) 1007–1053. [CrossRef] [MathSciNet] [Google Scholar]
  14. G. Marchuk, Methods and problems of computational mathematics, Actes du Congres International des Mathematiciens (Nice, 1970) 1 (1971) 151–161. [Google Scholar]
  15. M. Marion and R. Temam, Navier-Stokes equations : theory and approximation, Handb. Numer. Anal. VI. North-Holland, Amsterdam (1998) 503–688. [Google Scholar]
  16. A. McDonald, Transparent boundary conditions for the shallow water equations : testing in a nested environment. Mon. Wea. Rev. 131 (2003) 698–705. [CrossRef] [Google Scholar]
  17. I.M. Navon, B. Neta and M.Y. Hussaini, A perfectly matched layer approach to the linearized shallow water equations models. Mon. Wea. Rev. 132 (2004) 1369–1378. [CrossRef] [Google Scholar]
  18. J. Oliger and A. Sundström, Theoretical and practical aspects of some initial boundary value problems in fluid dynamics. SIAM J. Appl. Math. 35 (1978) 419–446. [CrossRef] [Google Scholar]
  19. J. Pedlosky, Geophysical fluid dynamics, 2nd edition. Springer (1987). [Google Scholar]
  20. M. Petcu, R. Temam and M. Ziane, Mathematical problems for the primitive equations with viscosity. in Handbook of Numerical Analysis. Special Issue on Some Mathematical Problems in Geophysical Fluid Dynamics, Handb. Numer. Anal., edited by R. Temam, P.G. Ciarlet EDs and J.G. Tribbia. Elsevier, New York (2008). [Google Scholar]
  21. A. Rousseau, R. Temam and J. Tribbia, Boundary conditions for the 2D linearized PEs of the ocean in the absence of viscosity. Discrete Contin. Dyn. Syst. 13 (2005) 1257–1276. [CrossRef] [MathSciNet] [Google Scholar]
  22. A. Rousseau, R. Temam and J. Tribbia, Numerical simulations of the inviscid primitive equations in a limited domain, in Analysis and Simulation of Fluid Dynamics, Advances in Mathematical Fluid Mechanics. Caterina Calgaro and Jean-François Coulombel and Thierry Goudon (2007). [Google Scholar]
  23. A. Rousseau, R. Temam and J. Tribbia, The 3D primitive equations in the absence of viscosity : boundary conditions and well-posedness in the linearized case. J. Math. Pure Appl. 89 (2008) 297–319. [CrossRef] [Google Scholar]
  24. A. Rousseau, R. Temam and J. Tribbia, Boundary value problems for the inviscid primitive equations in limited domains, in Computational Methods for the Oceans and the Atmosphere, Special Volume of the Handbook of Numerical Analysis, edited by P.G. Ciarlet, R. Temam and J. Tribbia, Guest. Elsevier, Amsterdam (2009). [Google Scholar]
  25. R. Temam, Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas frationnaires (ii). Arch. Rational Mech. Anal. 33 (1969) 377–385. [CrossRef] [MathSciNet] [Google Scholar]
  26. R. Temam and J. Tribbia, Open boundary conditions for the primitive and Boussinesq equations. J. Atmos. Sci. 60 (2003) 2647–2660. [CrossRef] [Google Scholar]
  27. R. Temam and M. Ziane, Some mathematical problems in geophysical fluid dynamics, in Handbook of mathematical fluid dynamics, edited by S. Friedlander and D. Serre. North-Holland (2004). [Google Scholar]
  28. J. van Kan, A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 7 (1986) 870–891. [CrossRef] [Google Scholar]
  29. T.T. Warner, R.A. Peterson and R.E. Treadon, A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull. Amer. Meteor. Soc. 78 (1997) 2599–2617. [CrossRef] [Google Scholar]
  30. W. Washington and C. Parkinson, An introduction to three-dimensional climate modelling, 2nd edition. Univ. Sci. Books, Sausalito, CA (2005). [Google Scholar]
  31. N.N. Yanenko, The method of fractional steps. The solution of problems of mathematical physics in several variables. Springer-Verlag (1971) English translation. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you