 C. Cao and E.S. Titi, Global wellposedness of the threedimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. Math. 166 (2007) 245–267. [CrossRef]
 Q. Chen, J. Laminie, A. Rousseau, R. Temam and J. Tribbia, A 2.5D model for the equations of the ocean and the atmosphere. Anal. Appl. (Singap.) 5 (2007) 199–229. [CrossRef] [MathSciNet]
 Q. Chen, R. Temam and J.J. Tribbia, Simulations of the 2.5D inviscid primitive equations in a limited domain. J. Comput. Phys. 227 (2008) 9865–9884. [CrossRef]
 Q. Chen, M.C. Shiue and R. Temam, The barotropic mode for the primitive equations. J. Sci. Comput. 45 (2010) 167199. [CrossRef]
 A.J. Chorin, Numerical solution of the NavierStokes equations. Math. Comput. 22 (1968) 745–762. [CrossRef] [MathSciNet]
 B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves. Math. Comp. 31 (1977) 629–651. [CrossRef] [MathSciNet]
 D. Givoli and B. Neta, Highorder nonreflecting boundary conditions for the dispersive shallow water equations. J. Comput. Appl. Math. 158 (2003) 49–60; Selected papers from the Conference on Computational and Mathematical Methods for Science and Engineering, Alicante (2002). [CrossRef]
 J.L. Guermond, P. Minev and J. Shen, An overview of projection methods for incompressible flow. Comput. Methods Appl. Mech. Engrg. 195 (2006) 6011–6045. [CrossRef] [MathSciNet]
 R.L. Higdon, Absorbing boundary conditions for difference approximations to the multidimensional wave equation. Math. Comput. 47 (1986) 437–459.
 G. Kobelkov, Existence of a solution ‘in the large’ for the 3D largescale ocean dynamics equations. C. R. Math. Acad. Sci. Paris 343 (2006) 283–286. [CrossRef] [MathSciNet]
 G.M. Kobelkov, Existence of a solution “in the large” for ocean dynamics equations. J. Math. Fluid Mech. 9 (2007) 588–610. [CrossRef] [MathSciNet]
 J.L. Lions, R. Temam and S.H. Wang, New formulations of the primitive equations of atmosphere and applications. Nonlinearity 5 (1992) 237–288. [CrossRef] [MathSciNet]
 J.L. Lions, R. Temam and S.H. Wang, On the equations of the largescale ocean. Nonlinearity 5 (1992) 1007–1053. [CrossRef] [MathSciNet]
 G. Marchuk, Methods and problems of computational mathematics, Actes du Congres International des Mathematiciens (Nice, 1970) 1 (1971) 151–161.
 M. Marion and R. Temam, NavierStokes equations : theory and approximation, Handb. Numer. Anal. VI. NorthHolland, Amsterdam (1998) 503–688.
 A. McDonald, Transparent boundary conditions for the shallow water equations : testing in a nested environment. Mon. Wea. Rev. 131 (2003) 698–705. [CrossRef]
 I.M. Navon, B. Neta and M.Y. Hussaini, A perfectly matched layer approach to the linearized shallow water equations models. Mon. Wea. Rev. 132 (2004) 1369–1378. [CrossRef]
 J. Oliger and A. Sundström, Theoretical and practical aspects of some initial boundary value problems in fluid dynamics. SIAM J. Appl. Math. 35 (1978) 419–446. [CrossRef]
 J. Pedlosky, Geophysical fluid dynamics, 2nd edition. Springer (1987).
 M. Petcu, R. Temam and M. Ziane, Mathematical problems for the primitive equations with viscosity. in Handbook of Numerical Analysis. Special Issue on Some Mathematical Problems in Geophysical Fluid Dynamics, Handb. Numer. Anal., edited by R. Temam, P.G. Ciarlet EDs and J.G. Tribbia. Elsevier, New York (2008).
 A. Rousseau, R. Temam and J. Tribbia, Boundary conditions for the 2D linearized PEs of the ocean in the absence of viscosity. Discrete Contin. Dyn. Syst. 13 (2005) 1257–1276. [CrossRef] [MathSciNet]
 A. Rousseau, R. Temam and J. Tribbia, Numerical simulations of the inviscid primitive equations in a limited domain, in Analysis and Simulation of Fluid Dynamics, Advances in Mathematical Fluid Mechanics. Caterina Calgaro and JeanFrançois Coulombel and Thierry Goudon (2007).
 A. Rousseau, R. Temam and J. Tribbia, The 3D primitive equations in the absence of viscosity : boundary conditions and wellposedness in the linearized case. J. Math. Pure Appl. 89 (2008) 297–319. [CrossRef]
 A. Rousseau, R. Temam and J. Tribbia, Boundary value problems for the inviscid primitive equations in limited domains, in Computational Methods for the Oceans and the Atmosphere, Special Volume of the Handbook of Numerical Analysis, edited by P.G. Ciarlet, R. Temam and J. Tribbia, Guest. Elsevier, Amsterdam (2009).
 R. Temam, Sur l’approximation de la solution des équations de NavierStokes par la méthode des pas frationnaires (ii). Arch. Rational Mech. Anal. 33 (1969) 377–385. [CrossRef] [MathSciNet]
 R. Temam and J. Tribbia, Open boundary conditions for the primitive and Boussinesq equations. J. Atmos. Sci. 60 (2003) 2647–2660. [CrossRef]
 R. Temam and M. Ziane, Some mathematical problems in geophysical fluid dynamics, in Handbook of mathematical fluid dynamics, edited by S. Friedlander and D. Serre. NorthHolland (2004).
 J. van Kan, A secondorder accurate pressurecorrection scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 7 (1986) 870–891. [CrossRef]
 T.T. Warner, R.A. Peterson and R.E. Treadon, A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull. Amer. Meteor. Soc. 78 (1997) 2599–2617. [CrossRef]
 W. Washington and C. Parkinson, An introduction to threedimensional climate modelling, 2nd edition. Univ. Sci. Books, Sausalito, CA (2005).
 N.N. Yanenko, The method of fractional steps. The solution of problems of mathematical physics in several variables. SpringerVerlag (1971) English translation.
Free Access
Issue 
ESAIM: M2AN
Volume 46, Number 3, MayJune 2012
Special volume in honor of Professor David Gottlieb



Page(s)  619  646  
DOI  https://doi.org/10.1051/m2an/2011058  
Published online  11 January 2012 
Current usage metrics show cumulative count of Article Views (fulltext article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 4896 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.