Free Access
Issue
ESAIM: M2AN
Volume 46, Number 3, May-June 2012
Special volume in honor of Professor David Gottlieb
Page(s) 647 - 660
DOI https://doi.org/10.1051/m2an/2011063
Published online 11 January 2012
  1. I.M. Babuška and S.A. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM Rev. 42 (2000) 451–484. [CrossRef] [MathSciNet] [Google Scholar]
  2. A. Bayliss, C.I. Goldstein and E. Turkel, An iterative method for the Helmholtz equation. J. Comput. Phys. 49 (1983) 443–457. [CrossRef] [Google Scholar]
  3. A. Bayliss, C.I. Goldstein and E. Turkel, On accuracy conditions for the numerical computation of waves. J. Comput. Phys. 59 (1985) 396–404. [CrossRef] [Google Scholar]
  4. A. Brandt, Multi-level adaptive solution to the boundary- value problems. Math. Comp. 31 (1977) 333-390. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Brandt and I. Livshits, Remarks on the wave-ray Multigrid Solvers for Helmholtz Equations, Computational Fluid and Solid Mechanics, edited by K.J. Bathe. Elsevier (2003) 1871–1871. [Google Scholar]
  6. H.C. Elman and D.P. O’Leary, Efficient iterative solution of the three dimensional Helmholtz equation. J. Comput. Phys. 142 (1998) 163–181. [CrossRef] [Google Scholar]
  7. Y.A. Erlangga, Advances in iterative methods and preconditioners for the Helmholtz equation. Arch. Comput. Methods Eng. 15 (2008) 37–66. [CrossRef] [MathSciNet] [Google Scholar]
  8. Y.A. Erlangga, C. Vuik and C.W. Oosterlee, On a class of preconditioners for the Helmholtz equation. Appl. Numer. Math. 50 (2004) 409–425. [CrossRef] [Google Scholar]
  9. Y.A. Erlangga, C.W. Oosterlee and C. Vuik, A novel multigrid based preconditioner for heterogeneous Helmholtz problems. SIAM J. Sci. Comput. 27 (2006) 1471–1492. [CrossRef] [Google Scholar]
  10. Y.A. Erlangga, C. Vuik and C.W. Oosterlee, Comparison of multigrid and incomplete LU shifted-Laplace preconditioners for the inhomogeneous Helmholtz equation. Appl. Numer. Math. 56 (2006) 648–666. [CrossRef] [Google Scholar]
  11. G.R. Hadley, A complex Jacobi iterative method for the indefinite Helmholtz equation. J. Comput. Phys. 203 (2005) 358–370. [CrossRef] [Google Scholar]
  12. I. Harari and E. Turkel, Accurate finite difference methods for time-harmonic wave propagation. J. Comput. Phys. 119 (1995) 252–270. [CrossRef] [Google Scholar]
  13. I. Singer and E. Turkel, High order finite difference methods for the Helmholtz equation. Comput. Meth. Appl. Mech. Eng. 163 (1998) 343–358. [CrossRef] [Google Scholar]
  14. I. Singer and E. Turkel, Sixth order accurate finite difference schemes for the Helmholtz equation. J. Comp. Acous. 14 (2006) 339–351. [CrossRef] [Google Scholar]
  15. H. Tal-Ezer and E. Turkel, Iterative Solver for the Exterior Helmholtz Problem. SIAM J. Sci. Comput. 32 (2010) 463–475. [CrossRef] [Google Scholar]
  16. E. Turkel, Numerical methods and nature. J. Sci. Comput. 28 (2006) 549–570. [CrossRef] [Google Scholar]
  17. E. Turkel, Boundary Conditions and Iterative Schemes for the Helmholtz Equation in Unbounded Regions, Computational Methods for Acoustics Problems, edited by F. Magoules. Saxe-Coburg Publ. UK (2008). [Google Scholar]
  18. H.A. van der Vorst, Bi-CGSTAB : A fast and smoothly converging variant of BI-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13 (1992) 631–644. [CrossRef] [MathSciNet] [Google Scholar]
  19. M.B. van Gijzen, Y.A. Erlangga and C. Vuik, Spectral analysis of the discrete Helmholtz operator preconditioned with a shifted Laplace precondtioner. SIAM J. Sci. Comput. 29 (2006) 1942–1958. [CrossRef] [MathSciNet] [Google Scholar]
  20. R. Wienands, C.W. Oosterlee, On three-grid Fourier analysis for multigrid. SIAM J. Sci. Comput. 22 (2001) 651–671. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you