Free Access
Issue
ESAIM: M2AN
Volume 46, Number 4, July-August 2012
Page(s) 949 - 978
DOI https://doi.org/10.1051/m2an/2011062
Published online 13 February 2012
  1. L. Ambrosio, Transport equation and Cauchy problem for BV vector fields. Invent. Math. 158 (2004) 227–260. [Google Scholar]
  2. J.W. Barrett and R. Nürnberg, Convergence of a finite-element approximation of surfactant spreading on a thin film in the presence of van der Waals forces. IMA J. Numer. Anal. 24 (2004) 323–363. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.W. Barrett and E. Süli, Existence of global weak solutions to some regularized kinetic models of dilute polymers. Multiscale Model. Simul. 6 (2007) 506–546. [Google Scholar]
  4. J.W. Barrett and E. Süli, Existence of global weak solutions to dumbbell models for dilute polymers with microscopic cut-off. Math. Models Methods Appl. Sci. 18 (2008) 935–971. [Google Scholar]
  5. J.W. Barrett and E. Süli, Numerical approximation of corotational dumbbell models for dilute polymers. IMA J. Numer. Anal. 29 (2009) 937–959. [CrossRef] [MathSciNet] [Google Scholar]
  6. J.W. Barrett and E. Süli, Existence and equilibration of global weak solutions to finitely extensible nonlinear bead-spring chain models for dilute polymers. Available as arXiv:1004.1432v2 [math.AP] from http://arxiv.org/abs/1004.1432 (2010). [Google Scholar]
  7. J.W. Barrett and E. Süli, Existence and equilibration of global weak solutions to kinetic models for dilute polymers I : Finitely extensible nonlinear bead-spring chains. Math. Models Methods Appl. Sci. 21 (2011) 1211–1289. [Google Scholar]
  8. J.W. Barrett and E. Süli, Finite element approximation of kinetic dilute polymer models with microscopic cut-off. ESAIM : M2AN 45 (2011) 39–89. [Google Scholar]
  9. J.W. Barrett and E. Süli, Existence and equilibration of global weak solutions to kinetic models for dilute polymers II : Hookean bead-spring chains. Math. Models Methods Appl. Sci. 22 (2012), to appear. Extended version available as arXiv:1008.3052 [math.AP] from http://arxiv.org/abs/1008.3052. [Google Scholar]
  10. A.V. Bhave, R.C. Armstrong and R.A. Brown, Kinetic theory and rheology of dilute, nonhomogeneous polymer solutions. J. Chem. Phys. 95 (1991) 2988–3000. [CrossRef] [Google Scholar]
  11. J. Brandts, S. Korotov, M. Křížek and J. Šolc, On acute and nonobtuse simplicial partitions. Helsinki University of Technology, Institute of Mathematics, Research Reports, A503 (2006). [Google Scholar]
  12. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, Berlin (1991). [Google Scholar]
  13. Ph. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). [Google Scholar]
  14. P. Degond and H. Liu, Kinetic models for polymers with inertial effects. Netw. Heterog. Media 4 (2009) 625–647. [Google Scholar]
  15. R.J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989) 511–547. [CrossRef] [MathSciNet] [Google Scholar]
  16. D. Eppstein, J.M. Sullivan and A. Üngör, Tiling space and slabs with acute tetrahedra. Comput. Geom. 27 (2004) 237–255. [Google Scholar]
  17. G. Grün and M. Rumpf, Nonnegativity preserving numerical schemes for the thin film equation. Numer. Math. 87 (2000) 113–152. [CrossRef] [MathSciNet] [Google Scholar]
  18. J.-I. Itoh and T. Zamfirescu, Acute triangulations of the regular dodecahedral surface. Eur. J. Comb. 28 (2007) 1072–1086. [CrossRef] [MathSciNet] [Google Scholar]
  19. D.J. Knezevic and E. Süli, A deterministic multiscale approach for simulating dilute polymeric fluids, in BAIL 2008 – boundary and interior layers. Lect. Notes Comput. Sci. Eng. 69 (2009) 23–38. [CrossRef] [Google Scholar]
  20. D.J. Knezevic and E. Süli, A heterogeneous alternating-direction method for a micro-macro dilute polymeric fluid model. ESAIM : M2AN 43 (2009) 1117–1156. [CrossRef] [EDP Sciences] [Google Scholar]
  21. D.J. Knezevic and E. Süli, Spectral Galerkin approximation of Fokker-Planck equations with unbounded drift. ESAIM : M2AN 43 (2009) 445–485. [Google Scholar]
  22. S. Korotov and M. Křížek, Acute type refinements of tetrahedral partitions of polyhedral domains. SIAM J. Numer. Anal. 39 (2001) 724–733. [CrossRef] [MathSciNet] [Google Scholar]
  23. S. Korotov and M. Křížek, Global and local refinement techniques yielding nonobtuse tetrahedral partitions. Comput. Math. Appl. 50 (2005) 1105–1113. [Google Scholar]
  24. P.-L. Lions and N. Masmoudi, Global existence of weak solutions to some micro-macro models. C. R. Math. Acad. Sci. Paris 345 (2007) 15–20. [CrossRef] [MathSciNet] [Google Scholar]
  25. N. Masmoudi, Well posedness of the FENE dumbbell model of polymeric flows. Comm. Pure Appl. Math. 61 (2008) 1685–1714. [Google Scholar]
  26. N. Masmoudi, Global existence of weak solutions to the FENE dumbbell model of polymeric flows. Preprint (2010). [Google Scholar]
  27. R.H. Nochetto, Finite element methods for parabolic free boundary problems, in Advances in Numerical Analysis I. Lancaster (1990); Oxford Sci. Publ., Oxford Univ. Press, New York (1991) 34–95. [Google Scholar]
  28. J.D. Schieber, Generalized Brownian configuration field for Fokker–Planck equations including center-of-mass diffusion. J. Non-Newtonian Fluid Mech. 135 (2006) 179–181. [CrossRef] [Google Scholar]
  29. W.H.A. Schilders and E.J.W. ter Maten, Eds., Numerical Methods in Electromagnetics, Handbook of Numerical Analysis XIII. North-Holland, Amsterdam (2005). [Google Scholar]
  30. R. Temam, Navier–Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications 2. North-Holland, Amsterdam (1984). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you