Free Access
Issue |
ESAIM: M2AN
Volume 46, Number 4, July-August 2012
|
|
---|---|---|
Page(s) | 813 - 839 | |
DOI | https://doi.org/10.1051/m2an/2011072 | |
Published online | 03 February 2012 |
- R. Adams, Sobolev spaces. Academic Press, New York (1975). [Google Scholar]
- P. Alart and A. Curnier, A mixed formulation for frictional contact problems prone to Newton like solution methods. Comput. Methods Appl. Mech. Eng. 92 (1991) 353–375. [Google Scholar]
- H.J. Barbosa and T. Hughes, The finite element method with Lagrange multipliers on the boundary : circumventing the Babuška-Brezzi condition. Comput. Methods Appl. Mech. Eng. 85 (1991) 109–128. [CrossRef] [MathSciNet] [Google Scholar]
- H.J. Barbosa and T. Hughes, Boundary Lagrange multipliers in finite element methods : error analysis in natural norms. Numer. Math. 62 (1992) 1–15. [CrossRef] [MathSciNet] [Google Scholar]
- H.J. Barbosa and T. Hughes, Circumventing the Babuška-Brezzi condition in mixed finite element approximations of elliptic variational inequalities. Comput. Methods Appl. Mech. Eng. 97 (1992) 193–210. [CrossRef] [MathSciNet] [Google Scholar]
- R. Becker, P. Hansbo and R. Stenberg, A finite element method for domain decomposition with non-matching grids. ESAIM : M2AN 37 (2003) 209–225. [Google Scholar]
- F. Ben Belgacem, Numerical simulation of some variational inequalities arisen from unilateral contact problems by the finite element method. SIAM J. Numer. Anal. 37 (2000) 1198–1216. [CrossRef] [MathSciNet] [Google Scholar]
- F. Ben Belgacem and Y. Renard, Hybrid finite element methods for the Signorini problem. Math. Comp. 72 (2003) 1117–1145. [CrossRef] [MathSciNet] [Google Scholar]
- H. Ben Dhia and M. Zarroug, Hybrid frictional contact particles in elements. Revue Européenne des Éléments Finis 9 (2002) 417–430. [CrossRef] [Google Scholar]
- S. Bordas and M. Duflot, Derivative recovery and a posteriori error estimate for extended finite elements. Comput. Methods Appl. Mech. Eng. 196 (2007) 3381–3399. [CrossRef] [Google Scholar]
- S. Bordas and M. Duflot, A posteriori error estimation for extended finite elements by an extended global recovery. Int. J. Numer. Methods Eng. 76 (2008) 1123–1138. [CrossRef] [Google Scholar]
- S. Bordas, M. Duflot and P. Le, A simple error estimator for extended finite elements. Commun. Numer. Methods Eng. 24 (2008) 961–971. [CrossRef] [Google Scholar]
- E. Chahine, P. Laborde and Y. Renard, Crack-tip enrichment in the XFEM method using a cut-off function. Int. J. Numer. Methods Eng. 75 (2008) 629–646. [CrossRef] [Google Scholar]
- P. Ciarlet, The finite element method for elliptic problems, in Handbook of Numerical Analysis. Part 1, edited by P. Ciarlet and J. Lions, North Holland II (1991) 17–352. [Google Scholar]
- J. Dolbow, N. Moës and T. Belytschko, An extended finite element method for modelling crack growth with frictional contact. Int. J. Numer. Methods Eng. 46 (1999) 131–150. [Google Scholar]
- S. Géniaut, Approche XFEM pour la fissuration sous contact des structures industrielles. Thèse, École Centrale Nantes (2006). [Google Scholar]
- S. Géniaut, P. Massin and N. Moës, A stable 3D contact formulation for cracks using XFEM. Revue Européenne de Mécanique Numérique, Calculs avec Méthodes sans Maillage 16 (2007) 259–275. [Google Scholar]
- P. Grisvard, Elliptic problems in nonsmooth domains. Pitman (1985). [Google Scholar]
- P. Hansbo, C. Lovadina, I. Perugia and G. Sangalli, A Lagrange multiplier method for the finite element solution of elliptic interface problems using nonmatching meshes. Numer. Math. 100 (2005) 91–115. [CrossRef] [MathSciNet] [Google Scholar]
- J. Haslinger and Y. Renard, A new fictitious domain approach inspired by the extended finite element method. SIAM J. Numer. Anal. 47 (2009) 1474–1499. [CrossRef] [MathSciNet] [Google Scholar]
- J. Haslinger, I. Hlaváček and J. Nečas, Numerical methods for unilateral problems in solid mechanics, in Handbook of Numerical Analysis. Part 2, edited by P. Ciarlet and J.-L. Lions, North Holland IV (1996) 313–485. [Google Scholar]
- P. Heintz and P. Hansbo, Stabilized Lagrange multiplier methods for bilateral elastic contact with friction. Comput. Methods Appl. Mech. Eng. 195 (2006) 4323–4333. [CrossRef] [MathSciNet] [Google Scholar]
- P. Hild, Numerical implementation of two nonconforming finite element methods for unilateral contact. Comput. Methods Appl. Mech. Eng. 184 (2000) 99–123. [CrossRef] [Google Scholar]
- P. Hild and Y. Renard, An error estimate for the Signorini problem with Coulomb friction approximated by finite elements. SIAM J. Numer. Anal. 45 (2007) 2012–2031. [CrossRef] [MathSciNet] [Google Scholar]
- P. Hild and Y. Renard, A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics. Numer. Math. 15 (2010) 101–129. [CrossRef] [Google Scholar]
- P. Hild, V. Lleras and Y. Renard, A residual error estimator for the XFEM approximation of the elasticity problem. Submitted. [Google Scholar]
- S. Hüeber, B.I. Wohlmuth, An optimal a priori error estimate for nonlinear multibody contact problems. SIAM J. Numer. Anal. 43 (2005) 156–173. [CrossRef] [MathSciNet] [Google Scholar]
- H. Khenous, J. Pommier and Y. Renard, Hybrid discretization of the Signorini problem with Coulomb friction, theoretical aspects and comparison of some numerical solvers. Appl. Numer. Math. 56 (2006) 163–192. [CrossRef] [Google Scholar]
- A. Khoei and M. Nikbakht, Contact friction modeling with the extended finite element method (XFEM). J. Mater. Proc. Technol. 177 (2006) 58–62. [CrossRef] [Google Scholar]
- A. Khoei and M. Nikbakht, An enriched finite element algorithm for numerical computation of contact friction problems. Int. J. Mech. Sci. 49 (2007) 183–199. [CrossRef] [Google Scholar]
- N. Kikuchi and J. Oden, Contact problems in elasticity. SIAM, Philadelphia (1988). [Google Scholar]
- P. Laborde and Y. Renard, Fixed point strategies for elastostatic frictional contact problems. Math. Methods Appl. Sci. 31 (2008) 415–441. [CrossRef] [Google Scholar]
- N. Moës, J. Dolbow and T. Belytschko, A finite element method for cracked growth without remeshing. Int. J. Numer. Methods Eng. 46 (1999) 131–150. [Google Scholar]
- M. Moussaoui and K. Khodja, Regularité des solutions d’un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan. Commun. Partial Differential Equations 17 (1992) 805–826. [Google Scholar]
- S. Nicaise, Y. Renard and E. Chahine, Optimal convergence analysis for the extended finite element method. Int. J. Numer. Methods Eng. 86 (2011) 528–548. [CrossRef] [Google Scholar]
- E. Pierres, M.-C. Baietto and A. Gravouil, A two-scale extended finite element method for modeling 3D crack growth with interfacial contact. Comput. Methods Appl. Mech. Eng. 199 (2010) 1165–1177. [CrossRef] [Google Scholar]
- J. Pommier and Y. Renard, Getfem++, an open source generic C++ library for finite element methods. Available on : http://download.gna.org/getfem/html/homepage/userdoc/index.html, December, 23rd (2011). [Google Scholar]
- J.J. Rodenas, O.A. Gonzales-Estrada and J.E. Tarancon, A recovery-type error estimator for the extended finite element method based on singular plus smooth stress field splitting. Int. J. Numer. Methods Eng. 76 (2008) 545–571. [CrossRef] [Google Scholar]
- R. Stenberg, On some techniques for approximating boundary conditions in the finite element method. J. Comput. Appl. Math. 63 (1995) 139–148. [CrossRef] [MathSciNet] [Google Scholar]
- G. Strang and G. Fix, An analysis of the finite element method. Prentice-Hall, Englewood Cliffs (1973). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.