Free Access
Issue
ESAIM: M2AN
Volume 46, Number 4, July-August 2012
Page(s) 797 - 812
DOI https://doi.org/10.1051/m2an/2011065
Published online 03 February 2012
  1. I. Babuška and J.E. Osborn, Finite element-Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems. Math. Comp. 52 (1989) 275–297. [MathSciNet] [Google Scholar]
  2. I. Babuška and J. Osborn, Eigenvalue Problems, in Handbook of Numerical Analysis II, Finite Element Methods (Part 1), edited by P.G. Lions and P.G. Ciarlet. North-Holland, Amsterdam (1991) 641–787. [Google Scholar]
  3. C. Bacuta and J.H. Bramble, Regularity estimates for the solutions of the equations of linear elasticity in convex plane polygonal domain, Special issue dedicated to Lawrence E. Payne. Z. Angew. Math. Phys. 54 (2003) 874–878. [CrossRef] [MathSciNet] [Google Scholar]
  4. D. Boffi, Finite element approximation of eigenvalue problems. Acta Numer. 19 (2010) 1–120. [CrossRef] [MathSciNet] [Google Scholar]
  5. D. Boffi, F. Brezzi and L. Gastaldi, On the convergence of eigenvalues for mixed fomulations. Ann. Scuola Norm. Sup. Pisa Cl. Sci 25 (1997) 131–154. [MathSciNet] [Google Scholar]
  6. D. Boffi, F. Brezzi and L. Gastaldi, On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comp. 69 (2000) 121–140. [Google Scholar]
  7. S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994). [Google Scholar]
  8. F. Brezzi and M. Fortin, MixedandHybrid Finite Element Methods. Springer-Verlag, New York (1991). [Google Scholar]
  9. F. Chatelin, Spectral Approximation of Linear Operators. Academic Press Inc., New York (1983). [Google Scholar]
  10. J. Douglas and J.E. Roberts, Global estimates for mixed methods for second order elliptic equations. Math. Comp. 44 (1985) 39–52. [CrossRef] [MathSciNet] [Google Scholar]
  11. R. Durán, L. Gastaldi and C. Padra, A posteriori error estimators for mixed approximations of eigenvalue problems. Math. Models Methods Appl. Sci. 9 (1999) 1165–1178. [Google Scholar]
  12. F. Gardini, A posteriori error estimates for an eigenvalue problem arising from fluid-structure interaction. Instituto Lombardo (Rend. Sc.) (2004) 138. [Google Scholar]
  13. F. Gardini, Mixed approximation of eigenvalue problems : a superconvergence result. ESAIM : M2AN 43 (2009) 853–865. [CrossRef] [EDP Sciences] [Google Scholar]
  14. V. Girault and P. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag, Berlin (1986). [Google Scholar]
  15. P. Grisvard, Singularities in Boundary Problems. MASSON and Springer-Verlag (1985). [Google Scholar]
  16. Q. Lin and J. Lin, Finite Element Methods : Accuracy and Inprovement. China Sci. Tech. Press (2005). [Google Scholar]
  17. Q. Lin and H. Xie, Asymptotic error expansion and Richardson extrapolation of eigenvalue approximations for second order elliptic problems by the mixed finite element method. Appl. Numer. Math. 59 (2009) 1884–1893. [CrossRef] [Google Scholar]
  18. Q. Lin and N. Yan, The Construction and Analysis of High Efficiency Finite Element Methods. HeBei University Publishers (1995) (in Chinese) [Google Scholar]
  19. Q. Lin, H. Huang and Z. Li, New expansion of numerical eigenvalue for − Δu = λρu by nonconforming elements. Math. Comp. 77 (2008) 2061–2084. [CrossRef] [MathSciNet] [Google Scholar]
  20. B. Mercier, J. Osborn, J. Rappaz and P.A. Raviart, Eigenvalue approximation by mixed and hybrid methods. Math. Comp. 36 (1981) 427–453. [CrossRef] [MathSciNet] [Google Scholar]
  21. J. Osborn, Approximation of the eigenvalue of a nonselfadjoint operator arising in the study of the stability of stationary solutions of the Navier-Stokes equations. SIAM J. Numer. Anal. 13 (1976) 185–197. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you