Free Access
Issue
ESAIM: M2AN
Volume 46, Number 5, September-October 2012
Page(s) 1029 - 1054
DOI https://doi.org/10.1051/m2an/2011069
Published online 13 February 2012
  1. G. Allaire, S. Clerc and S. Kokh, A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181 (2002) 577–616. [CrossRef] [MathSciNet]
  2. G. Allaire, G. Faccanoni and S. Kokh, A strictly hyperbolic equilibrium phase transition model. C. R. Acad. Sci. Paris, Sér. I 344 (2007) 135–140. [CrossRef]
  3. K. Annamalai and I.K. Puri, Advanced thermodynamics engineering. CRC Press (2002).
  4. Th. Barberon and Ph. Helluy, Finite volume simulations of cavitating flows. Comput. Fluids 34 (2005) 832–858. [CrossRef]
  5. J. Benoist and J.-B. Hiriart-Urruty, What is the subdifferential of the closed convex hull of a function? SIAM J. Math. Anal. 27 (1996) 1661–1679. [CrossRef] [MathSciNet]
  6. S. Benzoni Gavage, Stability of multi-dimensional phase transitions in a Van der Waals fluid. Nonlinear Anal. 31 (1998) 243–263. [CrossRef] [MathSciNet]
  7. F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and well-balanced schemes for sources. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2004).
  8. J.U. Brackbill, D.B. Kothe and C. Zemach, A continuum method for modeling surface tension. J. Comput. Phys. 100 (1992) 335–354. [CrossRef] [MathSciNet]
  9. H.B. Callen, Thermodynamics and an introduction to thermostatistics. John Wiley & sons, 2nd edition (1985).
  10. F. Caro, Modélisation et simulation numérique des transitions de phase liquide-vapeur. Ph.D. thesis, École Polytechnique (2004). http://www.imprimerie.polytechnique.fr/Theses/Files/caro.pdf.
  11. F. Caro, F. Coquel, D. Jamet and S. Kokh, A simple finite-volume method for compressible isothermal two-phase flows simulation. International Journal on Finite Volumes (2006). http://www.latp.univ-mrs.fr/IJFVDB/ijfv-caro-coquel-jamet-kokh.pdf.
  12. G. Chen, C.D. Levermore and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy. Comm. Pure Appl. Math. 47 (1992) 787–830. [CrossRef] [MathSciNet]
  13. F. Coquel and B. Perthame, Relaxation of energy and approximate Riemann solvers for general pressure laws in fluids dynamics. SIAM J. Numer. Anal. 35 (1998) 2223–2249. [CrossRef] [MathSciNet]
  14. J.-M. Delhaye, M. Giot and M.L. Riethmuller, Thermohydraulics of two-phase systems for industrial design and nuclear engineering. Hemisphere Publishing Corporation (1981).
  15. J.-M. Delhaye, M. Giot, L. Mahias, P. Raymond and C. Rénault, Thermohydraulique des réacteurs. EDP Sciences (1998).
  16. V.K. Dhir, Boiling heat transfer. Ann. Rev. Fluid Mech. 30 (1998) 365–401. [CrossRef]
  17. J.E. Dunn and J. Serrin, On the thermomechanics of interstitial working. Arch. Rational Mech. Anal. 88 (1985) 95–133. [MathSciNet]
  18. G. Faccanoni, Étude d’un modèle fin de changement de phase liquide-vapeur. Contribution à l’étude de la crise d’ébullition. Ph.D. thesis, École Polytechnique, France (2008). http://pastel.paristech.org/4785/.
  19. G. Faccanoni, S. Kokh and G. Allaire, Numerical simulation with finite volume of dynamic liquid-vapor phase transition, Finite Volumes for Complex Applications V. ISTE and Wiley (2008) 391–398.
  20. G. Faccanoni, G. Allaire and S. Kokh, Modelling and numerical simulation of liquid-vapor phase transition, in Conf. Proc. of EUROTHERM-84, Seminar on Thermodynamics of Phase Changes, Namur (2009).
  21. G. Faccanoni, S. Kokh and G. Allaire, Approximation of liquid-vapor phase transition for compressible fluids with tabulated EOS. C. R. Acad. Sci. Paris Sér. I 348 (2010) 473–478. [CrossRef]
  22. H. Fan, One phase Riemann problem and wave interactions in systems of conservation laws of mixed type. SIAM J. Math. Anal. 24 (1993) 840–865. [CrossRef]
  23. H. Fan, Traveling waves, Riemann problems and computations of a model of the dynamics of liquid/vapor phase transitions. J. Differ. Equ. 150 (1998) 385–437. [CrossRef]
  24. H. Fan and M. Slemrod, The Riemann problem for systems of conservation laws of mixed type, in Conf. Proc. on Shock Induced Transitions and Phase Structure in General Media Institute of Mathematics and its Applications. Minneapolis (1990) 61–91.
  25. C. Fouillet, Généralisation à des mélanges binaires de la méthode du second gradient et application à la simulation numérique directe de l’ébullition nuclée. Ph.D. thesis, Université Paris 6 (2003).
  26. E. Godlewski and N. Seguin, The Riemann problem for a simple model of phase transition. Commun. Math. Sci. 4 (2006) 227–247. [CrossRef]
  27. H. Gouin, Utilization of the second gradient theory in continuum mechanics to study the motion and thermodynamics of liquid-vapor interfaces. Physicochemical Hydrodynamics – Interfacial Phenomena B 174 (1987) 667–682.
  28. W. Greiner, L. Neise and H. Stöcker, Thermodynamics and statistical mechanics. Springer (1997).
  29. Ph. Helluy, Quelques exemples de méthodes numériques récentes pour le calcul des écoulements multiphasiques. Mémoire d’habilitation à diriger des recherches (2005).
  30. Ph. Helluy and H. Mathis, Pressure laws and fast Legendre transform. Math. Models Methods Appl. Sci. to appear.
  31. Ph. Helluy and N. Seguin, Relaxation models of phase transition flows. ESAIM : M2AN 40 (2006) 331–352. [CrossRef] [EDP Sciences]
  32. J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of convex analysis. Grundlehren Text Editions, Springer-Verlag, Berlin (2001).
  33. D. Jamet, O. Lebaigue, N. Coutris and J.-M. Delhaye, The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change. J. Comput. Phys. 169 (2001) 624–651. [CrossRef] [MathSciNet]
  34. S. Jaouen, Étude mathématique et numérique de stabilité pour des modèles hydrodynamiques avec transition de phase. Ph.D. thesis, Université Paris 6, France (2001).
  35. S. Jin and C.D. Levermore, Numerical schemes for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys. 126 (1996) 449–467. [CrossRef]
  36. S. Kokh, Aspects numériques et théoriques de la modélisation des écoulements diphasiques compressibles par des méthodes de capture d’interfaces. Ph.D. thesis, Université Paris 6 (2001).
  37. D.J. Korteweg, Sur la forme que prennent les équations des mouvements des fluides si l’on tient compte des forces capillaires par des variations de densité. Arch. Néer. Sci. Exactes Sér. II 6 (1901) 1–24.
  38. P.G. LeFloch, Hyperbolic systems of conservation laws. Birkhäuser Verlag, Basel (2002).
  39. O. Le Métayer, J. Massoni and R. Saurel, Elaborating equations of state of a liquid and its vapor for two-phase flow models. Int. J. Thermal Sci. 43 (2004) 265–276. [CrossRef]
  40. O. Le Métayer, J. Massoni and R. Saurel, Modelling evaporation fronts with reactive Riemann solvers. J. Comput. Phys. 205 (2005) 567–610. [CrossRef] [MathSciNet]
  41. E.W. Lemmon, M.O. McLinden and D.G. Friend, Thermophysical properties of fluid systems, in WebBook de Chimie NIST, Base de Données Standard de Référence NIST Numéro 69, National Institute of Standards and Technology, edited by P.J. Linstrom and W.G. Mallard. Gaithersburg MD, 20899, http://webbook.nist.gov.
  42. R.J. LeVeque, Finite Volume methods for hyperbolic problems. Cambridge University Press, Cambridge. Appl. Math. (2002).
  43. T.P. Liu, Hyperbolic conservation laws with relaxation. Commun. Math. Phys. 108 (1987) 153–175. [CrossRef] [MathSciNet]
  44. T. Matolcsi, On the classification of phase transitions. Z. Angew. Math. Phys. 47 (1996) 837–857. [CrossRef] [MathSciNet]
  45. R. Menikoff and B. Plohr, The Riemann problem for fluid flow of real materials. Rev. Mod. Phys. 61 (1989) 75–130. [NASA ADS] [CrossRef] [MathSciNet]
  46. S. Nukiyama, The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure. Int. J. Heat Mass Transfer 9 (1966) 1419–1433. (English translation of the original paper published in J. Jpn Soc. Mech. Eng. 37 (1934) 367–374). [CrossRef]
  47. F. Petitpas, E. Franquet, R. Saurel and O. Le Métayer, A relaxation-projection method for compressible flows. II. Artificial heat exchanges for multiphase shocks. J. Comput. Phys. 225 (2007) 2214–2248. [CrossRef]
  48. P. Ruyer, Modèle de champ de phase pour l’étude de l’ébullition. Ph.D. thesis, École Polytechnique (2006). www.imprimerie.polytechnique.fr/Theses/Files/Ruyer.pdf.
  49. R. Saurel, J.-P. Cocchi and P.-B. Butlers, Numerical study of cavitation in the wake of a hypervelocity underwater projectile. J. Propuls. Power 15 (1999) 513–522. [CrossRef]
  50. R. Saurel, F. Petitpas and R. Abgrall, Modelling phase transition in metastable liquids : application to cavitating and flashing flows. J. Fluid Mech. 607 (2008) 313–350. [CrossRef] [MathSciNet]
  51. M. Shearer, Admissibility criteria for shock wave solutions of a system of conservation laws of mixed type. Proc. R. Soc. Edinb. 93 (1983) 133–244.
  52. M. Slemrod, Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Arch. Rational Mech. Anal. 81 (1983) 301–315. [MathSciNet]
  53. L. Truskinovsky, Kinks versus shocks, in Shock induced transitions and phase structures in general media, edited by R. Fosdick et al. Springer Verlag, Berlin (1991).
  54. P. Van Carey, Liquid-vapor phase-change phenomena. Taylor and Francis (1992).
  55. A. Voß, Exact Riemann solution for the Euler equations with nonconvex and nonsmooth equation of State. Ph.D. thesis, RWTH-Aachen (2004). http://www.it-voss.com/papers/thesis-voss-030205-128-final.pdf.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you