Free Access
Issue |
ESAIM: M2AN
Volume 46, Number 5, September-October 2012
|
|
---|---|---|
Page(s) | 1003 - 1028 | |
DOI | https://doi.org/10.1051/m2an/2011046 | |
Published online | 13 February 2012 |
- D.N. Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equations. Calcolo 21 (1984) 337–344. [Google Scholar]
- D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749–1779. [CrossRef] [MathSciNet] [Google Scholar]
- F. Bassi and S. Rebay, A High-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131 (1997) 267–279. [CrossRef] [MathSciNet] [Google Scholar]
- R. Becker, E. Burman and P. Hansbo, A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity. Comput. Methods Appl. Mech. Engrg. 198 (2009) 3352–3360. [CrossRef] [MathSciNet] [Google Scholar]
- M. Bercovier and O.A. Pironneau, Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer. Math. 33 (1977) 211–224. [Google Scholar]
- S.C. Brenner, Korn’s inequalities for piecewise H1 vector fields. Math. Comp. 73 (2003) 1067–1087. [CrossRef] [MathSciNet] [Google Scholar]
- S.C. Brenner, Poincaré-Friedrichs inequalities for piecewise H1 functions. SIAM J. Numer. Anal. 41 (2003) 306–324. [CrossRef] [MathSciNet] [Google Scholar]
- S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, 3th edition, Springer (2008). [Google Scholar]
- S.C. Brenner and L.-Y. Sung, Linear finite element methods for planar linear elasticity. Math. Comp. 59 (1992) 321–338. [CrossRef] [MathSciNet] [Google Scholar]
- F. Brezzi, On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers. RAIRO Anal. Numér. 8 (1974) 129–151. [Google Scholar]
- F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer Series in Computational Mathematics, Springer-Verlag, New York (1991). [Google Scholar]
- F. Brezzi, J. Douglas Jr., and L.D. Marini, Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217–235. [CrossRef] [MathSciNet] [Google Scholar]
- F. Brezzi, J. Douglas Jr., R. Durán and M. Fortin, Mixed finite elements for second order elliptic problems in three variables. Numer. Math. 51 (1987) 237–250. [CrossRef] [MathSciNet] [Google Scholar]
- F. Brezzi, G. Manzini, D. Marini, P. Pietra and A. Russo, Discontinuous galerkin approximations for elliptic problems. Numer. Methods Partial Differential Equations (2000) 365–378. [Google Scholar]
- F. Brezzi, T.J.R. Hughes, L.D. Marini and A. Masud, Mixed discontinuous Galerkin methods for Darcy flow. J. Sci. Comput. 22, 23 (2005) 119–145. [CrossRef] [MathSciNet] [Google Scholar]
- J. Carrero, B. Cockburn and D. Schötzau, Hybridized globally divergence-free LDG methods. Part I : the Stokes problem. Math. Comp. 75 (2005) 533–563. [Google Scholar]
- P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam (1978). [Google Scholar]
- B. Cockburn, G. Kanschat, D. Schötzau and C. Schwab, Local discontinuous Galerkin methods for the Stokes system. SIAM J. Numer. Anal. 40 (2002) 319–343. [CrossRef] [MathSciNet] [Google Scholar]
- B. Cockburn, D. Schötzau and J. Wang, Discontinuous Galerkin methods for incompressible elastic materials. Comput. Methods Appl. Mech. Engrg. 195 (2006) 3184–3204. [CrossRef] [MathSciNet] [Google Scholar]
- M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Sér. Rouge 7 (1973) 33–75. [Google Scholar]
- M. Fortin, An analysis of the convergence of mixed finite element methods. RAIRO Anal. Numér. 11 (1977) 341–354. [MathSciNet] [Google Scholar]
- V. Girault, B. Rivière and M.F. Wheeler, A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems. Math. Comp. 74 (2005) 53–84. [Google Scholar]
- P. Hansbo and M.G. Larson, Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Comput. Methods Appl. Mech. Engrg. 191 (2002) 1895–1908. [CrossRef] [MathSciNet] [Google Scholar]
- P. Hansbo and M.G. Larson, Discontinuous Galerkin and the Crouzeix-Raviart element : Application to elasticity. ESAIM : M2AN 37 (2003) 63–72. [Google Scholar]
- P. Hansbo and M.G. Larson, Piecewise divergence-free discontinuous Galerkin methods for Stokes flow. Comm. Num. Methods Engrg. 24 (2008) 355–366. [CrossRef] [Google Scholar]
- F. Hecht, Construction d’une base de fonctions P1 non conforme à divergence nulle dans R3. RAIRO Anal. Numér. 15 (1981) 119–150. [MathSciNet] [Google Scholar]
- P. Hood and C. Taylor, Numerical solution of the Navier-Stokes equations using the finite element technique. Comput. Fluids 1 (1973) 1–28. [CrossRef] [Google Scholar]
- P. Hood and C. Taylor, Navier-Stokes equations using mixed interpolation. Finite Element Methods in Flow Problems, edited by J.T. Oden. UAH Press, Huntsville, Alabama (1974). [Google Scholar]
- R. Kouhia and R. Stenberg, A linear nonconforming finite element method for nearly incompressible elasticity and Stokes flow. Comput. Methods Appl. Mech. Engrg. 124 (1995) 195–212. [CrossRef] [MathSciNet] [Google Scholar]
- A. Lew, P. Neff, D. Sulsky and M. Ortiz, Optimal BV estimates for a discontinuous Galerkin method for linear elasticity. Appl. Math. Res. express 3 (2004) 73–106. [CrossRef] [Google Scholar]
- N.C. Nguyen, J. Peraire and B. Cockburn, A hybridizable discontinuous Galerkin method for Stokes flow. Comput. Methods Appl. Mech. Engrg. 199 (2010) 582–597. [CrossRef] [MathSciNet] [Google Scholar]
- B. Rivière and V. Girault, Discontinuous finite element methods for incompressible flows on subdomains with non-matching interfaces. Comput. Methods Appl. Mech. Engrg. 195 (2006) 3274–3292. [CrossRef] [MathSciNet] [Google Scholar]
- D. Schötzau, C. Schwab and A. Toselli, Mixed hp-DGFEM for incompressible flows. SIAM J. Numer. Anal. 40 (2003) 2171–2194. [Google Scholar]
- L.R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO Modélisation Mathématique et Analyse Numérique 19 (1985) 111–143. [Google Scholar]
- S.-C. Soon, B. Cockburn and H.K. Stolarski, A hybridizable discontinuous Galerkin method for linear elasticity. Int. J. Numer. Methods Engrg. 80 (2009), 1058–1092. [CrossRef] [Google Scholar]
- A. Ten Eyck, and A. Lew, Discontinuous Galerkin methods for non-linear elasticity. Int. J. Numer. Methods Engrg. 67 (2006) 1204–1243. [CrossRef] [Google Scholar]
- A. Ten Eyck, F. Celiker and A. Lew, Adaptive stabilization of discontinuous Galerkin methods for nonlinear elasticity : Analytical estimates. Comput. Methods Appl. Mech. Engrg. 197 (2008) 2989–3000. [CrossRef] [MathSciNet] [Google Scholar]
- F. Thomasset, Implementation of finite element methods for Navier-Stokes equations. Springer-Verlag, New York (1981). [Google Scholar]
- J.P. Whiteley, Discontinuous Galerkin finite element methods for incompressible non-linear elasticity, Comput. Methods Appl. Mech. Engrg. 198 (2009) 3464–3478. [CrossRef] [Google Scholar]
- T.P. Wihler, Locking-free DGFEM for elasticity problems in polygons. IMA J. Numer. Anal. 24 (2004) 45–75. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.