Free Access
Volume 46, Number 5, September-October 2012
Page(s) 1175 - 1199
Published online 22 February 2012
  1. R.A. Adams, Sobolev Spaces, 1st edition. Pure Appl. Math. Academic Press, Inc. (1978).
  2. W. Bangerth, R. Hartmann and G. Kanschat, deal.II – a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33 (2007) 24/1–24/27. [CrossRef]
  3. J.H. Bramble, Multigrid Methods, 1st edition. Longman Scientific & Technical, Essex (1993).
  4. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, 2nd edition. Springer (2002).
  5. H.C. Brinkman, A calculation of the viscouse force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A1 (1947) 27–34.
  6. T. Chartier, R.D. Falgout, V.E. Henson, J. Jones, T. Manteuffel, S. McCormick, J. Ruge and P.S. Vassilevski, Spectral AMGe (AMGe). SIAM J. Sci. Comput. 25 (2003) 1–26. [CrossRef]
  7. M. Dryja, M.V. Sarkis and O.B. Widlund, Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions. Numer. Math. 72 (1996) 313–348. [CrossRef] [MathSciNet]
  8. Y. Efendiev and T.Y. Hou, Multiscale finite element methods, Theory and applications. Surveys and Tutorials in Appl. Math. Sci. Springer, New York 4 (2009).
  9. R.E. Ewing, O. Iliev, R.D. Lazarov, I. Rybak and J. Willems, A simplified method for upscaling composite materials with high contrast of the conductivity. SIAM J. Sci. Comput. 31 (2009) 2568–2586. [CrossRef]
  10. J. Galvis and Y. Efendiev, Domain decomposition preconditioners for multiscale flows in high-contrast media. Multiscale Model. Simul. 8 (2010) 1461–1483. [CrossRef] [MathSciNet] [PubMed]
  11. J. Galvis and Y. Efendiev, Domain decomposition preconditioners for multiscale flows in high contrast media : reduced dimension coarse spaces. Multiscale Model. Simul. 8 (2010) 1621–1644. [CrossRef] [MathSciNet] [PubMed]
  12. V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Comput. Math. Theory and Algorithms 5 (1986).
  13. I.G. Graham, P.O. Lechner and R. Scheichl, Domain decomposition for multiscale PDEs. Numer. Math. 106 (2007) 589–626. [CrossRef] [MathSciNet]
  14. P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics. Pitman Advanced Publishing Program, Boston, MA 24 (1985).
  15. W. Hackbusch, Multi-Grid Methods and Applications, 2nd edition. Springer Series in Comput. Math. Springer, Berlin (2003).
  16. T.Y. Hou, X.-H. Wu and Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comp. 68 (1999) 913–943. [CrossRef] [MathSciNet]
  17. A. Klawonn, O.B. Widlund and M. Dryja, Dual-primal FETI methods for three-dimensional elliptic problems with heterogeneous coefficients. SIAM J. Numer. Anal. 40 (2002) 159–179 (electronic). [CrossRef] [MathSciNet]
  18. J. Mandel and M. Brezina, Balancing domain decomposition for problems with large jumps in coefficients. Math. Comp. 65 (1996) 1387–1401. [CrossRef] [MathSciNet]
  19. T.P.A. Mathew, Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations. Lect. Notes Comput. Sci. Eng. Springer, Berlin Heidelberg (2008).
  20. S.V. Nepomnyaschikh, Mesh theorems on traces, normalizations of function traces and their inversion. Sov. J. Numer. Anal. Math. Modelling 6 (1991) 151–168. [CrossRef]
  21. C. Pechstein and R. Scheichl, Analysis of FETI methods for multiscale PDEs. Numer. Math. 111 (2008) 293–333. [CrossRef] [MathSciNet]
  22. C. Pechstein and R. Scheichl, Analysis of FETI methods for multiscale PDEs – Part II : interface variation. To appear in Numer. Math.
  23. M. Reed and B. Simon, Methods of Modern Mathematical Physics IV : Analysis of Operators. Academic Press, New York (1978).
  24. M.V. Sarkis, Schwarz Preconditioners for Elliptic Problems with Discontinuous Coefficients Using Conforming and Non-Conforming Elements. Ph.D. thesis, Courant Institute, New York University (1994).
  25. M.V. Sarkis, Nonstandard coarse spaces and Schwarz methods for elliptic problems with discontinuous coefficients using non-conforming elements. Numer. Math. 77 (1997) 383–406. [CrossRef] [MathSciNet]
  26. B.F. Smith, P.E. Bjørstad and W.D. Gropp, Domain Decomposition, Parallel Multilevel Methods for Elliptic Partial Differential Equations, 1st edition. Cambridge University Press, Cambridge (1996).
  27. A. Toselli and O. Widlund, Domain Decomposition Methods – Algorithms and Theory. Springer Series in Comput. Math. (2005).
  28. J. Van Lent, R. Scheichl and I.G. Graham, Energy-minimizing coarse spaces for two-level Schwarz methods for multiscale PDEs. Numer. Linear Algebra Appl. 16 (2009) 775–799. [CrossRef] [MathSciNet]
  29. P.S. Vassilevski, Multilevel block-factrorization preconditioners. Matrix-based analysis and algorithms for solving finite element equations. Springer-Verlag, New York (2008).
  30. J. Wang and X. Ye, New finite element methods in computational fluid dynamics by H(div) elements. SIAM J. Numer. Anal. 45 (2007) 1269–1286. [CrossRef] [MathSciNet]
  31. J. Willems, Numerical Upscaling for Multiscale Flow Problems. Ph.D. thesis, University of Kaiserslautern (2009).
  32. J. Xu and L.T. Zikatanov, On an energy minimizing basis for algebraic multigrid methods. Comput. Visualisation Sci. 7 (2004) 121–127.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you