Free Access
Volume 46, Number 5, September-October 2012
Page(s) 1201 - 1224
Published online 15 March 2012
  1. Y. Achdou, O. Pironneau and F. Valentin, Effective boundary conditions for laminar flows over periodic rough boundaries. J. Comput. Phys. 147 (1998) 187–218. [CrossRef] [MathSciNet]
  2. G. Barnocky and R. H. Davis, The influence of pressure-dependent density and viscosity on the elastohydrodynamic collision and rebound of two spheres. J. Fluid Mech. 209 (1989) 501–519. [CrossRef]
  3. A. Basson and D. Gérard-Varet, Wall laws for fluid flows at a boundary with random roughness. Comm. Pure Appl. Math. 61 (2008) 941–987. [CrossRef]
  4. L. Bocquet and J. Barrat, Flow boundary conditions from nano-to micro-scales. Soft Matt. 3 (2007) 985–693.
  5. H. Brenner and R.G. Cox, The resistance to a particle of arbitrary shape in translational motion at small Reynolds numbers. J. Fluid Mech. 17 (1963) 561–595. [CrossRef]
  6. D. Bresch, B. Desjardins and D. Gérard-Varet, On compressible Navier-Stokes equations with density dependent viscosities in bounded domains. J. Math. Pures Appl. 87 (2007) 227–235. [CrossRef]
  7. M. Cooley and M. O’Neill, On the slow motion generated in a viscous fluid by the approach of a sphere to a plane wall or stationary sphere. Mathematika 16 (1969) 37–49. [CrossRef]
  8. R.H. Davis, Y. Zhao, K.P. Galvin and H.J. Wilson, Solid-solid contacts due to surface roughness and their effects on suspension behaviour. Philos. Transat. Ser. A Math. Phys. Eng. Sci. 361 (2003) 871–894. [CrossRef]
  9. R.H. Davis, J. Serayssol and E. Hinch, The elastohydrodynamic collision of two spheres. J. Fluid Mech. 163 (2006) 045302.
  10. D. Gérard-Varet, The Navier wall law at a boundary with random roughness. Commun. Math. Phys. 286 (2009) 81–110. [CrossRef]
  11. D. Gérard-Varet and M. Hillairet, Regularity issues in the problem of fluid structure interaction. Arch. Rational Mech. Anal. 195 (2010) 375–407. [CrossRef]
  12. M. Hillairet, Lack of collision between solid bodies in a 2D incompressible viscous flow. Commun. Partial Differ. Equ. 32 (2007) 1345–1371. [CrossRef] [MathSciNet]
  13. L. Hocking, The effect of slip on the motion of a sphere close to a wall and of two adjacent sheres. J. Eng. Mech. 7 (1973) 207–221. [CrossRef]
  14. W. Jäger and A. Mikelić, Couette flows over a rough boundary and drag reduction. Commun. Math. Phys. 232 (2003) 429–455.
  15. K. Kamrin, M. Bazant and H. Stine, Effective slip boundary conditions for arbitrary periodic surfaces: the surface mobility tensor. Phys. Rev. Lett. 102 (2009).
  16. C. Kunert, J. Harting and O. Vinogradova, Random roughness hydrodynamic boundary conditions. Phys. Rev. Lett. 105 (2010) 016001. [CrossRef] [PubMed]
  17. E. Lauga, M. Brenner and H. Stone, Microfluidics: The no-slip boundary condition (2007).
  18. N. Lecoq, R. Anthore, B. Cichocki, P. Szymczak and F. Feuillebois, Drag force on a sphere moving towards a corrugated wall. J. Fluid Mech. 513 (2004) 247–264. [CrossRef]
  19. A. Lefebvre, Numerical simulation of gluey particles. ESAIM: M2AN 43 (2009) 53–80. [CrossRef] [EDP Sciences]
  20. P. Luchini, Asymptotic analysis of laminar boundary-layer flow over finely grooved surfaces. Eur. J. Mech. B, Fluids 14 (1995) 169–195.
  21. M. O’Neill, A slow motion of viscous liquid caused by a slowly moving solid sphere. Mathematika 11 (1964) 67–74. [CrossRef]
  22. M. O’Neill and K. Stewartson, On the slow motion of a sphere parallel to a nearby plane wall. J. Fluid Mech. 27 (1967) 705–724. [CrossRef] [MathSciNet]
  23. J. Smart and D. Leighton, Measurement of the hydrodynamic surface roughness of noncolloidal spheres. Phys. Fluids 1 (1989) 52–60. [CrossRef]
  24. O. Vinogradova and G. Yakubov, Surface roughness and hydrodynamic boundary conditions. Phys. Rev. E 73 (1986) 479–487.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you