Free Access
Volume 46, Number 5, September-October 2012
Page(s) 1081 - 1106
Published online 13 February 2012
  1. G. Allaire, Numerical Analysis and Optimization : An Introduction to Mathematical Modelling and Numerical Simulation in Numerical Mathematics and Scientific Computation series. Oxford University Press (2007). [Google Scholar]
  2. D. Biskamp, Nonlinear Magnetohydrodynamics. Cambridge University Press (1992). [Google Scholar]
  3. J. Blum, Numerical simulation and optimal control in plasma physics, with application to Tokamaks. Series in Modern Applied Mathematics. Wiley/Gauthier-Villard (1989). [Google Scholar]
  4. J. Blum, Numerical identification of the plasma current density in a Tokamak fusion reactor : the determination of a non-linear source in an elliptic pde, invited conference, in Proceedings of PICOF02. Carthage, Tunisie (2002). [Google Scholar]
  5. J. Blum, T. Gallouet and J. Simon, Existence and control of plasma equilibirum in a Tokamak. SIAM J. Math. Anal. 17 (1986) 1158–1177. [CrossRef] [MathSciNet] [Google Scholar]
  6. J. Blum, C. Boulbe and B. Faugeras, Real time reconstruction of plasma equilibrium in a Tokamak, International conference on burning plasma diagnostics. Villa Manoastero, Varenna (2007). [Google Scholar]
  7. H. Brezis and H. Berestycki, On a free boundary problem arising in plasma physics. Nonlinear Anal. 4 (1980) 415–436. [CrossRef] [MathSciNet] [Google Scholar]
  8. S. Briguglio, G. Wad, F. Zonca and C. Kar, Hybrid magnetohydrodynamic-gyrokinetic simulation of toroidal Alfven modes. Phys. Plasmas 2 (1995) 3711–3723. [CrossRef] [Google Scholar]
  9. S. Briguglio, F. Zonca and C. Kar, Hybrid magnetohydrodynamic-particle simulation of linear and nonlinear evolution of Alfven modes in tokamaks. Phys. Plasmas 5 (1998) 3287–3301. [CrossRef] [Google Scholar]
  10. L.A. Caffarelli and S. Salsa, A geometric approach to free boundary problems, Graduate Studies in Mathematics. AMS, Providence, RI 68 (2005). [Google Scholar]
  11. F. Chen, Introduction to plasma physics and controlled fusion. Springer, New York (1984). [Google Scholar]
  12. O. Czarny and G. Huysmans, MHD stability in X-point geometry : simulation of ELMs. Nucl. Fusion 47 (2007) 659–666. [CrossRef] [Google Scholar]
  13. O. Czarny and G. Huysmans, Bézier surfaces and finite elements for MHD simulations. J. Comput. Phys. 227 (2008) 7423–7445. [Google Scholar]
  14. E. Deriaz, B. Després, G. Faccanoni, K.P. Gostaf, L.-M. Imbert-Gérard, G. Sadaka and R. Sart, Magnetic equations with FreeFem++, The Grad-Shafranov equation and the Current Hole. ESAIM Proc. 32 (2011) 76–94. [Google Scholar]
  15. J.I. Diaz and J.F. Padial, On a free-boundary problem modeling the action of a limiter on a plasma. Discrete Contin. Dyn. Syst. Suppl. (2007) 313–322. [Google Scholar]
  16. J.I. Diaz and J.-M. Rakotoson, On a two-dimensional stationary free boundary problem arising in the confinement of a plasma in a Stellarator. C. R. Acad. Sci. Paris, Sér. I 317 (1993) 353–359. [Google Scholar]
  17. E. Feireisl, Dynamics of viscous compressible fluids. Oxford University Press (2004). [Google Scholar]
  18. J. Freidberg, Plasma physics and fusion energy. Cambridge (2007). [Google Scholar]
  19. A. Friedman, Variational principles and free-boundary problems. Wiley-interscience publication, Wiley, New York (1982). [Google Scholar]
  20. T. Fujita, Tokamak equilibria with nearly zero central current : the current hole (review article). Nucl. Fusion 50 (2010). [Google Scholar]
  21. T. Fujita, T. Oikawa, T. Suzuki, S. Ide, Y. Sakamoto, Y. Koide, T. Hatae, O. Naito, A. Isayama, N. Hayashi and H. Shirai, Plasma equilibrium and confinement in a Tokamak with nearly zero central current density in JT-60U. Phys. Rev. Lett. 87 (2001) 245001–245005. [CrossRef] [PubMed] [Google Scholar]
  22. J.F. Gerbeau, C. Le Bris and T. Lelièvre, Mathematical methods for the magnetohydrodynamics of liquid metals. Oxford University Press, USA (2006). [Google Scholar]
  23. G. Huysmans, T.C. Hender, N.C. Hawkes and X. Litaudon, MHD stability of advanced Tokamak scenarios with reversed central current : an explanation of the “Current Hole”. Phys. Rev. Lett. 87 (2001) 245002–245006. [CrossRef] [PubMed] [Google Scholar]
  24. G.T.A. Huysmans, S. Pamela, E. van der Plas and P. Ramet, Non-linear MHD simulations of edge localized modes (ELMs). Plasma Phys. Control. Fusion 51 (2009) 124012. [CrossRef] [Google Scholar]
  25. B.B. Kadomtsev and O.P. Pogutse, Non linear helical perturbations of a plasma in a Tokamak. Sov. Phys.-JETP 38 (1974) 283–290. [Google Scholar]
  26. S.-E. Kruger, C.C. Hegna and J.D. Callen, Generalized reduced magnetohydrodynamic equations. Phys. Plasmas 5 (1998) 4169–4183. [CrossRef] [Google Scholar]
  27. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Études Mathématiques. Dunod (1969). [Google Scholar]
  28. P.-L. Lions, Mathematical topics in fluid mechanics. Incompressible models, edited by Oxford Science Publication 1 (1996). [Google Scholar]
  29. P.-L. Lions, Mathematical topics in fluid mechanics. Compressible models, edited by Oxford Science Publication 2 (1998). [Google Scholar]
  30. H. Lütjens and J.-F. Luciani, The XTOR code for nonlinear 3D simulations of MHD instabilities in tokamak plasmas. J. Comput. Phys. 227 (2008) 6944–6966. [CrossRef] [Google Scholar]
  31. H. Lütjens and J.-F. Luciani, XTOR-2F : A fully implicit NewtonKrylov solver applied to nonlinear 3D extended MHD in tokamaks. J. Comput. Phys. 229 (2010) 8130–8143. [CrossRef] [Google Scholar]
  32. K. Miyamoto, Plasma physics and controlled nuclear fusion. Springer (2005). [Google Scholar]
  33. B. Nkonga, Private communication (2010). [Google Scholar]
  34. M.N. Rosenbluth, D.A. Monticello, H.R. Strauss and R.B. White, Dynamics of high β plasmas. Phys. Fluids 19 (1976) 1987. [CrossRef] [Google Scholar]
  35. R. Smaltz, Reduced, three-dimensional, nonlinear equations for high-β plasmas including toroidal effects. Phys. Lett. A 82 (1981) 14–17. [Google Scholar]
  36. H.R. Strauss, Nonlinear three-dimensional magnetohydrodynamics of noncircular Tokamaks. Phys. Fluids 19 (1976) 134–140. [Google Scholar]
  37. H.R. Strauss, Dynamics of high β plasmas. Phys. Fluids 20 (1977) 1354–1360. [CrossRef] [Google Scholar]
  38. R. Temam, Remarks on a free boundary value problem arising in plasma physics. Commun. Partial Differ. Equ. 2 (1977) 563–585. [CrossRef] [Google Scholar]
  39. R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland (1979). [Google Scholar]
  40. Z. Yoshida, S.M. Mahajan, S. Ohsaki, M. Iqbal and N. Shatashvili, Beltrami fields in plasmas : High-confinement mode boundary layers and high beta equilibria. Phys. Plasmas 8 (2001) 2125. [CrossRef] [Google Scholar]
  41. Z. Yoshida et al., Potential Control and Flow Generation in a Toroidal Internal-Coil System – a New Approach to High-beta Equilibrium, in 20th IAEA Fusion Energy Conference. Online at (2004). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you