Free Access
Issue
ESAIM: M2AN
Volume 46, Number 5, September-October 2012
Page(s) 1107 - 1120
DOI https://doi.org/10.1051/m2an/2011076
Published online 13 February 2012
  1. R.A. Adams and J.J.F. Fournier, Sobolev spaces. Academic Press, San Diego (2007). [Google Scholar]
  2. S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solution of elliptic partial differential equations satisfying general boundary conditions I. Comm. Pure Appl. Math. 12 (1959) 623–727. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.W. Barrett and C.M. Elliott, A finite-element method for solving elliptic equations with Neumann data on a curved boundary using unfitted meshes. IMA J. Numer. Anal. 4 (1984) 309–325. [CrossRef] [MathSciNet] [Google Scholar]
  4. J. Bergh and J. Löfström, Interpolation spaces. Springer, Berlin (1976). [Google Scholar]
  5. M. Bergounioux, K. Ito and K. Kunisch, Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37 (1999) 1176–1194. [CrossRef] [MathSciNet] [Google Scholar]
  6. E. Casas, Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim. 4 (1986) 1309–1322. [CrossRef] [MathSciNet] [Google Scholar]
  7. E. Casas and F. Tröltzsch, Recent advances in the analysis of pointwise state-constrained elliptic optimal control problems. ESAIM : COCV 16 (2010) 581–600. [CrossRef] [EDP Sciences] [Google Scholar]
  8. S. Cherednichenko and A. Rösch, Error estimates for the regularization of optimal control problems with pointwise control and state constraints. Z. Anal. Anwendungen 27 (2008) 195–212. [CrossRef] [Google Scholar]
  9. S. Cherednichenko, K. Krumbiegel and A. Rösch, Error estimates for the Lavrentiev regularization of elliptic optimal control problems. Inverse Problems 24 (2008). [Google Scholar]
  10. P.G. Ciarlet, The finite element method for elliptic problems. SIAM Classics In Applied Mathematics, Philadelphia (2002). [Google Scholar]
  11. J.C. de los Reyes, C. Meyer and B. Vexler, Finite element error analysis for state-constrained optimal control of the Stokes equations. Control and Cybernetics 37 (2008) 251–284. [MathSciNet] [Google Scholar]
  12. K. Deckelnick and M. Hinze, Convergence of a finite element approximation to a state constrained elliptic control problem. SIAM J. Numer. Anal. 45 (2007) 1937–1953. [CrossRef] [MathSciNet] [Google Scholar]
  13. K. Deckelnick and M. Hinze, Numerical analysis of a control and state constrained elliptic control problem with piecewise constant control approximations, in Numerical Mathematics and Advanced Applications, edited by K. Kunisch, G. Of and O. Steinbach, Berlin, Heidelberg, Springer-Verlag (2008) 597–604. [Google Scholar]
  14. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985). [Google Scholar]
  15. M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semi-smooth Newton method. SIAM J. Optim. 13 (2003) 865–888. [CrossRef] [MathSciNet] [Google Scholar]
  16. M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints. Springer-Verlag, Berlin (2009). [Google Scholar]
  17. K. Kunisch and A. Rösch, Primal-dual active set strategy for a general class of constrained optimal control problems. SIAM J. Optim. 13 (2002) 321–334. [CrossRef] [MathSciNet] [Google Scholar]
  18. C. Meyer, Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints. Control and Cybernetics 37 (2008) 51–85. [MathSciNet] [Google Scholar]
  19. C. Meyer, A. Rösch and F. Tröltzsch, Optimal control of PDEs with regularized pointwise state constraints. Comput. Optim. Appl. 33 (2006) 209–228. [CrossRef] [MathSciNet] [Google Scholar]
  20. P. Neittaanmaki, J. Sprekels and D. Tiba, Optimization of Elliptic Systems. Springer-Verlag, New York (2006). [Google Scholar]
  21. R. Rannacher, Zur L-Konvergenz linearer finiter elemente beim Dirichlet-problem. Math. Z. 149 (1976) 69–77. [CrossRef] [MathSciNet] [Google Scholar]
  22. A. Rösch and F. Tröltzsch, Existence of regular Lagrange multipliers for elliptic optimal control problem with pointwise control-state constraints. SIAM J. Optim. 45 (2006) 548–564. [CrossRef] [Google Scholar]
  23. A.H. Schatz, Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids. I : Global estimates. Math. Comput. 67 (1998) 877–899. [CrossRef] [Google Scholar]
  24. A.H. Schatz and L.B. Wahlbin, Interior maximum norm estimates for the finite element method. Math. Comput. 31 (1977) 414–442. [CrossRef] [Google Scholar]
  25. A.H. Schatz and L.B. Wahlbin, On the quasi-optimality in L of the Formula -projection into finite element spaces. Math. Comput. 38 (1982) 1–22. [Google Scholar]
  26. A. Schmidt and K.G. Siebert, Design of Adaptive Finite Element Software, The Finite Element Toolbox ALBERTA. Springer-Verlag, Berlin (2000). [Google Scholar]
  27. F. Tröltzsch, Regular Lagrange multipliers for problems with pointwise mixed control-state constraints. SIAM J. Optim. 15 (2005) 616–634. [CrossRef] [Google Scholar]
  28. F. Tröltzsch, Optimal control of partial differential equations. Amer. Math. Soc., Providence, Rhode Island (2010). [Google Scholar]
  29. D.Z. Zanger, The inhomogeneous Neumann problem in Lipschitz domains. Commun. Partial Differ. Equ. 25 (2000) 1771–1808. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you