Free Access
Volume 46, Number 6, November-December 2012
Page(s) 1275 - 1319
Published online 27 March 2012
  1. A. Abdulle, P. Lin and A. Shapeev, Homogenization-based analysis of quasicontinuum method for complex crystals. arXiv:1006.0378. [Google Scholar]
  2. N.C. Admal and E.B. Tadmor, A unified interpretation of stress in molecular systems. J. Elasticity 100 (2010) 63–143. [CrossRef] [MathSciNet] [Google Scholar]
  3. R. Alicandro and M. Cicalese, A general integral representation result for continuum limits of discrete energies with superlinear growth. SIAM J. Math. Anal. 36 (2004) 1–37 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  4. D.N. Arnold and R.S. Falk, A uniformly accurate finite element method for the Reissner-Mindlin plate. SIAM J. Numer. Anal. 26 (1989) 1276–1290. [CrossRef] [MathSciNet] [Google Scholar]
  5. S. Badia, M. Parks, P. Bochev, M. Gunzburger and R. Lehoucq, On atomistic-to-continuum coupling by blending. Multiscale Model. Simul. 7 (2008) 381–406. [CrossRef] [MathSciNet] [Google Scholar]
  6. G.P. Bazeley, Y.K. Cheung, B.M. Irons and O.C. Zienkiewicz, Triangle elements in plate bending : conforming and nonconforming solutions, in Proc. Conf. Matrix Meth. Struc. Mech. Wright Patterson AFB, Ohio (1966). [Google Scholar]
  7. T. Belytschko, W.K. Liu and B. Moran, Nonlinear finite elements for continua and structures. John Wiley & Sons Ltd., Chichester (2000). [Google Scholar]
  8. P.G. Ciarlet, The finite element method for elliptic problems. Classics in Appl. Math. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA 40 (2002). Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)]. [Google Scholar]
  9. M. Dobson, There is no pointwise consistent quasicontinuum energy. arXiv:1109.1897. [Google Scholar]
  10. M. Dobson and M. Luskin, Analysis of a force-based quasicontinuum approximation. ESAIM : M2AN 42 (2008) 113–139. [Google Scholar]
  11. M. Dobson and M. Luskin, An analysis of the effect of ghost force oscillation on quasicontinuum error. ESAIM : M2AN 43 (2009) 591–604. [CrossRef] [EDP Sciences] [Google Scholar]
  12. M. Dobson and M. Luskin, An optimal order error analysis of the one-dimensional quasicontinuum approximation. SIAM J. Numer. Anal. 47 (2009) 2455–2475. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Dobson, R. Elliot, M. Luskin and E. Tadmor, A multilattice quasicontinuum for phase transforming materials : cascading cauchy born kinematics. J. Computer-Aided Mater. Design 14 (2007) 219–237. [CrossRef] [Google Scholar]
  14. M. Dobson, M. Luskin and C. Ortner, Accuracy of quasicontinuum approximations near instabilities. J. Mech. Phys. Solids 58 (2010) 1741–1757. [CrossRef] [MathSciNet] [Google Scholar]
  15. M. Dobson, M. Luskin and C. Ortner, Stability, instability, and error of the force-based quasicontinuum approximation. Arch. Rational Mech. Anal. 197 (2010) 179–202. [CrossRef] [MathSciNet] [Google Scholar]
  16. W. E and P. Ming, Analysis of the local quasicontinuum method, in Frontiers and prospects of contemporary applied mathematics. Ser. Contemp. Appl. Math. CAM 6 (2005) 18–32. [Google Scholar]
  17. W. E and P. Ming, Cauchy-Born rule and the stability of crystalline solids : static problems. Arch. Rational Mech. Anal. 183 (2007) 241–297. [Google Scholar]
  18. W. E, J. Lu and J.Z. Yang, Uniform accuracy of the quasicontinuum method. Phys. Rev. B 74 (2006) 214115. [CrossRef] [Google Scholar]
  19. B. Eidel and A. Stukowski, A variational formulation of the quasicontinuum method based on energy sampling in clusters. J. Mech. Phys. Solids 57 (2009) 87–108. [CrossRef] [MathSciNet] [Google Scholar]
  20. M. Finnis, Interatomic Forces in Condensed Matter. Oxford Series on Materials Modelling 1 (2003). [Google Scholar]
  21. J. Fish, M.A. Nuggehally, M.S. Shephard, C.R. Picu, S. Badia, M.L. Parks, and M. Gunzburger, Concurrent AtC coupling based on a blend of the continuum stress and the atomistic force. Comput. Methods Appl. Mech. Eng. 196 (2007) 4548–4560. [CrossRef] [Google Scholar]
  22. M. Gunzburger and Y. Zhang, A quadrature-rule type approximation to the quasi-continuum method. Multiscale Model. Simul. 8 (2009/2010) 571–590. [CrossRef] [Google Scholar]
  23. M. Iyer and V. Gavini, A field theoretical approach to the quasi-continuum method. J. Mech. Phys. Solids 59 (2011) 1506–1535. [CrossRef] [MathSciNet] [Google Scholar]
  24. P.A. Klein and J.A. Zimmerman, Coupled atomistic-continuum simulations using arbitrary overlapping domains. J. Comput. Phys. 213 (2006) 86–116. [CrossRef] [MathSciNet] [Google Scholar]
  25. J. Knap and M. Ortiz, An analysis of the quasicontinuum method. J. Mech. Phys. Solids 49 (2001) 1899–1923. [CrossRef] [Google Scholar]
  26. S. Kohlhoff and S. Schmauder, A new method for coupled elastic-atomistic modelling, in Atomistic Simulation of Materials : Beyond Pair Potentials, edited by V. Vitek and D.J. Srolovitz. Plenum Press, New York (1989) 411–418. [Google Scholar]
  27. X.H. Li and M. Luskin, An analysis of the quasi-nonlocal quasicontinuum approximation of the embedded atom model. To appear in Int. J. Multiscale Comput. Eng., arXiv:1008.3628. [Google Scholar]
  28. X.H. Li and M. Luskin, A generalized quasi-nonlocal atomistic-to-continuum coupling method with finite range interaction. To appear in IMA J. Numer. Anal., arXiv:1007.2336. [Google Scholar]
  29. P. Lin, Theoretical and numerical analysis for the quasi-continuum approximation of a material particle model. Math. Comp. 72 (2003) 657–675. [CrossRef] [MathSciNet] [Google Scholar]
  30. P. Lin, Convergence analysis of a quasi-continuum approximation for a two-dimensional material without defects. SIAM J. Numer. Anal. 45 (2007) 313–332 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  31. J. Lu and P. Ming, Convergence of a force-based hybrid method for atomistic and continuum models in three dimension. arXiv:1102.2523. [Google Scholar]
  32. M. Luskin and C. Ortner, An analysis of node-based cluster summation rules in the quasicontinuum method. SIAM J. Numer. Anal. 47 (2009) 3070–3086. [CrossRef] [MathSciNet] [Google Scholar]
  33. C. Makridakis, C. Ortner and E. Süli, A priori error analysis of two force-based atomistic/continuum models of a periodic chain. Numer. Math. 119 (2011) 83–121. [CrossRef] [MathSciNet] [Google Scholar]
  34. C. Makridakis, C. Ortner and E. Süli, Stress-based atomistic/continuum coupling : a new variant of the quasicontinuum approximation. Int. J. Multiscale Comput. Eng. forthcoming. [Google Scholar]
  35. R.E. Miller and E.B. Tadmor, The quasicontinuum method : overview, applications and current directions. J. Computer-Aided Mater. Design 9 (2003) 203–239. [CrossRef] [Google Scholar]
  36. R.E. Miller and E.B. Tadmor, A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods. Model. Simul. Mater. Sci. Eng. 17 (2009). [Google Scholar]
  37. P. Ming and J.Z. Yang, Analysis of a one-dimensional nonlocal quasi-continuum method. Multiscale Model. Simul. 7 (2009) 1838–1875. [CrossRef] [MathSciNet] [Google Scholar]
  38. M. Ortiz, R. Phillips and E.B. Tadmor, Quasicontinuum analysis of defects in solids. Philos. Mag. A 73 (1996) 1529–1563. [CrossRef] [Google Scholar]
  39. C. Ortner, Analysis of the Quasicontinuum Method. Ph.D. thesis, University of Oxford (2006). [Google Scholar]
  40. C. Ortner, A priori and a posteriori analysis of the quasinonlocal quasicontinuum method in 1D. Math. Comp. 80 (2011) 1265–1285. [Google Scholar]
  41. C. Ortner and A.V. Shapeev, Analysis of an energy-based atomistic/continuum coupling approximation of a vacancy in the 2d triangular lattice. To appear in Math. Comp., arXiv1104.0311. [Google Scholar]
  42. C. Ortner and E. Süli, Analysis of a quasicontinuum method in one dimension. ESAIM : M2AN 42 (2008) 57–91. [CrossRef] [EDP Sciences] [Google Scholar]
  43. C. Ortner and H. Wang, A priori error estimates for energy-based quasicontinuum approximations of a periodic chain. Math. Models Methods Appl. Sci. 21 (2011) 2491–2521. [CrossRef] [MathSciNet] [Google Scholar]
  44. C. Ortner and L. Zhang, work in progress. [Google Scholar]
  45. C. Ortner and L. Zhang, Construction and sharp consistency estimates for atomistic/continuum coupling methods with general interfaces : a 2d model problem. arXiv:1110.0168. [Google Scholar]
  46. M.L. Parks, P.B. Bochev and R.B. Lehoucq, Connecting atomistic-to-continuum coupling and domain decomposition. Multiscale Model. Simul. 7 (2008) 362–380. [CrossRef] [MathSciNet] [Google Scholar]
  47. D. Pettifor, Bonding and structure of molecules and solids. Oxford University Press (1995). [Google Scholar]
  48. K. Polthier and E. Preuß, Identifying vector field singularities using a discrete Hodge decomposition, in Visualization and mathematics III, Math. Vis. Springer, Berlin (2003) 113–134. [Google Scholar]
  49. A.V. Shapeev, Consistent energy-based atomistic/continuum coupling for two-body potentials in one and two dimensions. Multiscale Model. Simul. 9 (2011) 905–932. [Google Scholar]
  50. V.B. Shenoy, R. Miller, E.B. Tadmor, D. Rodney, R. Phillips and M. Ortiz, An adaptive finite element approach to atomic-scale mechanics – the quasicontinuum method. J. Mech. Phys. Solids 47 (1999) 611–642. [CrossRef] [MathSciNet] [Google Scholar]
  51. L.E. Shilkrot, R.E. Miller and W.A. Curtin, Coupled atomistic and discrete dislocation plasticity. Phys. Rev. Lett. 89 (2002) 025501. [CrossRef] [PubMed] [Google Scholar]
  52. T. Shimokawa, J.J. Mortensen, J. Schiotz and K.W. Jacobsen, Matching conditions in the quasicontinuum method : removal of the error introduced at the interface between the coarse-grained and fully atomistic region. Phys. Rev. B 69 (2004) 214104. [CrossRef] [Google Scholar]
  53. G. Strang and G. Fix, An Analysis of the Finite Element Method. Wellesley-Cambridge Press (2008). [Google Scholar]
  54. B. Van Koten and M. Luskin, Development and analysis of blended quasicontinuum approximations. To appear in SIAM J. Numer. Anal., arXiv:1008.2138. [Google Scholar]
  55. B. Van Koten, Z.H. Li, M. Luskin and C. Ortner, A computational and theoretical investigation of the accuracy of quasicontinuum methods, in Numerical Analysis of Multiscale Problems, edited by I. Graham, T. Hou, O. Lakkis and R. Scheichl. Springer Lect. Notes Comput. Sci. Eng. 83 (2012). [Google Scholar]
  56. S.P. Xiao and T. Belytschko, A bridging domain method for coupling continua with molecular dynamics. Comput. Methods Appl. Mech. Eng. 193 (2004) 1645–1669. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you