Free Access
Issue |
ESAIM: M2AN
Volume 46, Number 6, November-December 2012
|
|
---|---|---|
Page(s) | 1321 - 1336 | |
DOI | https://doi.org/10.1051/m2an/2012008 | |
Published online | 30 March 2012 |
- F. Alouges and C. Audouze, Preconditioned gradient flows for nonlinear eigenvalue problems and application to the Hartree-Fock functional. Numer. Methods Partial Differ. Equ. 25 (2009) 380–400. [CrossRef] [Google Scholar]
- G.B. Bacskay, A quadratically convergent Hartree-Fock (QC-SCF) method. Application to closed shell systems. Chem. Phys. 61 (1981) 385–404. [CrossRef] [Google Scholar]
- E. Cancés, SCF algorithms for Hartree-Fock electronic calculations, in Mathematical models and methods for ab initio quantum chemistry, edited by M. Defranceschi and C. Le Bris. Lect. Notes Chem. 74 (2000). [Google Scholar]
- E. Cancès and C. Le Bris, Can we outperform the DIIS approach for electronic structure calculations? Int. J. Quant. Chem. 79 (2000) 82–90. [Google Scholar]
- E. Cancès and C. Le Bris, On the convergence of SCF algorithms for the Hartree-Fock equations. Math. Mod. Numer. Anal. 34 (2000) 749–774. [Google Scholar]
- E. Cancès and K. Pernal, Projected gradient algorithms for Hartree-Fock and density matrix functional theory calculations. J. Chem. Phys. 128 (2008) 134–108. [Google Scholar]
- E. Cancès, M. Defranceschi, W. Kutzelnigg, C. Le Bris and Y. Maday, Computational quantum chemistry : a primer. Handbook Numer. Anal. 10 (2003) 3–270. [CrossRef] [Google Scholar]
- A. Edelman, T.A. Arias and S.T. Smith, The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20 (1998) 303. [CrossRef] [Google Scholar]
- J.B. Francisco, J.M. Martínez and L. Martínez, Globally convergent trust-region methods for self-consistent field electronic structure calculations. J. Chem. Phys. 121 (2004) 10863. [CrossRef] [PubMed] [Google Scholar]
- M. Griesemer and F. Hantsch, Unique solutions to Hartree-Fock equations for closed shell atoms. Arch. Ration. Mech. Anal. 203 (2012) 883–900. [CrossRef] [MathSciNet] [Google Scholar]
- A. Haraux, M.A. Jendoubi and O. Kavian, Rate of decay to equilibrium in some semilinear parabolic equations. J. Evol. Equ. 3 (2003) 463–484. [CrossRef] [MathSciNet] [Google Scholar]
- S. Høst, J. Olsen, B. Jansík, L. Thøgersen, P. Jørgensen and T. Helgaker, The augmented Roothaan-Hall method for optimizing Hartree-Fock and Kohn-Sham density matrices. J. Chem. Phys. 129 (2008) 124–106. [Google Scholar]
- K.N. Kudin, G.E. Scuseria and E. Cancès, A black-box self-consistent field convergence algorithm : one step closer. J. Chem. Phys. 116 (2002) 8255. [CrossRef] [Google Scholar]
- E.H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems. Commun. Math. Phys. 53 (1977) 185–194. [CrossRef] [MathSciNet] [Google Scholar]
- P.L. Lions, Solutions of Hartree-Fock equations for Coulomb systems. Commun. Math. Phys. 109 (1987) 33–97. [CrossRef] [MathSciNet] [Google Scholar]
- S. Łojasiewicz, Ensembles semi-analytiques. Institut des Hautes Études Scientifiques (1965). [Google Scholar]
- R. McWeeny,. The density matrix in self-consistent field theory. I. Iterative construction of the density matrix, in Proc. of R. Soc. Lond. A. Math. Phys. Sci. 235 (1956) 496. [Google Scholar]
- P. Pulay, Improved SCF convergence acceleration. J. Comput. Chem. 3 (1982) 556–560. [CrossRef] [Google Scholar]
- J. Salomon, Convergence of the time-discretized monotonic schemes. ESAIM : M2AN 41 (2007) 77–93. [Google Scholar]
- V.R. Saunders and I.H. Hillier, A “Level-Shifting” method for converging closed shell Hartree-Fock wave functions. Int. J. Quant. Chem. 7 (1973) 699–705. [CrossRef] [Google Scholar]
- R.B. Sidje, Expokit : a software package for computing matrix exponentials. ACM Trans. Math. Softw. 24 (1998) 130–156. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.