Free Access
Volume 46, Number 6, November-December 2012
Page(s) 1447 - 1465
Published online 31 May 2012
  1. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, 3th edition. Springer (2008). [Google Scholar]
  2. E. Burman, Consistent SUPG-method for transient transport problems : Stability and convergence. Comput. Methods Appl. Mech. Eng. 199 (2010) 1114–1123. [Google Scholar]
  3. I.T. Cameron, F.Y. Wang, C.D. Immanuel and F. Stepanek, Process systems modelling and applications in granulation : a review. Chem. Eng. Sci. 60 (2005) 3723–375. [CrossRef] [Google Scholar]
  4. F.B. Campos and P.L.C. Lage, A numerical method for solving the transient multidimensional population balance equation using an Euler-Lagrange formulation. Chem. Eng. Sci. 58 (2003) 2725–2744. [CrossRef] [Google Scholar]
  5. P. Chen, J. Sanyal and M.P. Dudukovic, CFD modeling of bubble columns flows : implementation of population balance. Chem. Eng. Sci. 59 (2004) 5201–5207. [CrossRef] [Google Scholar]
  6. K. Eriksson and C. Johnson, Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems. Math. Comput. 60 (1993) 167–188. [CrossRef] [Google Scholar]
  7. S. Ganesan and L. Tobiska, Implementation of an operator-splitting finite element method for high-dimensional parabolic problems. Faculty of Mathematics, University of Magdeburg, Preprint No. 11-04 (2011). [Google Scholar]
  8. S. Ganesan and L. Tobiska, An operator-splitting finite element method for the efficient parallel solution of multidimensional population balance systems. Chem. Eng. Sci. 69 (2012) 59–68. [CrossRef] [Google Scholar]
  9. R. Glowinski, E.J. Dean, G. Guidoboni, D.H. Peaceman and H.H. Rachford, Applications of operator-splitting methods to the direct numerical simulation of particulate and free-surface flows and to the numerical solution of the two-dimensional elliptic Monge-Ampère equation. Japan J. Ind. Appl. Math. 25 (2008) 1–63. [Google Scholar]
  10. R. Gunawan, I. Fusman and R.D. Braatz, High resolution algorithms for multidimensional population balance equations. AIChE J. 50 (2004) 2738–2749. [CrossRef] [Google Scholar]
  11. R. Gunawan, I. Fusman and R.D. Braatz, Parallel high-resolution finite volume simulation of particulate processes. AIChE J. 54 (2008) 1449–1458. [CrossRef] [Google Scholar]
  12. T.J.R. Hughes and A.N. Brooks, A multi-dimensional upwind scheme with no cross-wind diffusion, in Finite element methods for convection dominated flows, edited by T.J.R. Hughes. ASME, New York (1979) 19–35. [Google Scholar]
  13. H.M. Hulburt and S. Katz, Some problems in particle technology : A statistical mechanical formulation. Chem. Eng. Sci. 19 (1964) 555–574. [CrossRef] [Google Scholar]
  14. V. John and J. Novo, Error analysis of the SUPG finite element discretization of evolutionary convection-diffusion-reaction equations. SIAM J. Numer. Anal. 49 (2011) 1149–1176. [CrossRef] [Google Scholar]
  15. V. John, M. Roland, T. Mitkova, K. Sundmacher, L. Tobiska and A. Voigt, Simulations of population balance systems with one internal coordinate using finite element methods. Chem. Eng. Sci. 64 (2009) 733–741. [Google Scholar]
  16. V. Kulikov, H. Briesen, R. Grosch, A. Yang, L. von Wedel and W. Marquardt, Modular dynamic simulation for integrated particulate processes by means of tool integration. Chem. Eng. Sci. 60 (2005) 2069–2083. [CrossRef] [Google Scholar]
  17. V. Kulikov, H. Briesen and W. Marquardt, A framework for the simulation of mass crystallization considering the effect of fluid dynamics. Chem. Eng. Sci. 45 (2006) 886–899. [Google Scholar]
  18. G. Lian, S. Moore and L. Heeney, Population balance and computational fluid dynamics modelling of ice crystallisation in a scraped surface freezer. Chem. Eng. Sci. 61 (2006) 7819–7826. [CrossRef] [Google Scholar]
  19. D.L. Ma, D.K. Tafti and R.D. Braatz, High-resolution simulation of multidimensional crystal growth. Ind. Eng. Chem. Res. 41 (2002) 6217–6223. [CrossRef] [Google Scholar]
  20. D.L. Ma, D.K. Tafti and R.D. Braatz, Optimal control and simulation of multidimensional crystallization processes. Comput. Chem. Eng. 26 (2002) 1103–1116. [CrossRef] [Google Scholar]
  21. A. Majumder, V. Kariwala, S. Ansumali and A. Rajendran, Fast high-resolution method for solving multidimensional population balances in crystallization. Ind. Eng. Chem. Res. 49 (2010) 3862–3872. [CrossRef] [Google Scholar]
  22. D. Marchisio and R. Fox, Solution of population balance equations using the direct quadrature method of moments. J. Aero. Sci. 36 (2005) 43–73. [CrossRef] [Google Scholar]
  23. D. L. Marchisio and R.O. Fox, Solution of population balance equations using the direct quadrature method of moments. J. Aero. Sci. 36 (2005) 43–73. [CrossRef] [Google Scholar]
  24. M. N. Nandanwara and S. Kumar, A new discretization of space for the solution of multi-dimensional population balance equations : Simultaneous breakup and aggregation of particles. Chem. Eng. Sci. 63 (2008) 3988–3997. [CrossRef] [Google Scholar]
  25. D. Ramkrishna, Population Balances, Theory and Applications to Particulate Systems in Engineering. Academic Press, San Diego (2000). [Google Scholar]
  26. D. Ramkrishna and A.W. Mahoney, Population balance modeling : Promise for the future. Chem. Eng. Sci. 57 (2002) 595–606. [CrossRef] [Google Scholar]
  27. V. Thomee, Galerkin Finite Element Methods for Parabolic Problems, 3th edition. Springer (2008). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you