Free Access
Issue
ESAIM: M2AN
Volume 46, Number 6, November-December 2012
Page(s) 1421 - 1445
DOI https://doi.org/10.1051/m2an/2012011
Published online 31 May 2012
  1. F.P. Andriulli, K. Cools, H. Bagci, F. Olyslager, A. Buffa, S. Christiansen and E. Michielssen, A multiplicative Calderon preconditioner for the electric field integral equation. IEEE Trans. Antennas Propag. 56 (2008) 2398–2412. [CrossRef]
  2. H. Bagci, F.P. Andriulli, K. Coolst, F. Olyslager and E. Michielssen, A Calderón multiplicative preconditioner for the combined field integral equation. IEEE Trans. Antennas Propag. 57 (2009) 3387–3392. [CrossRef]
  3. A. Bendali, Numerical analysis of the exterior boundary value problem for time harmonic Maxwell equations by a boundary finite element method. Part 2 : The discrete problem. Math. Comput. 43 (1984) 47–68.
  4. A. Bendali, M.B. Fares and J. Gay, A boundary-element solution of the Leontovitch problem. IEEE Trans. Antennas Propag. 47 (1999) 1597–1605. [CrossRef]
  5. Y. Boubendir, A. Bendali and M.B. Fares, Coupling of a non-overlapping domain decomposition method for a nodal finite element method with a boundary element method. Int. J. Numer. Methods Eng. 73 (2008) 1624–1650. [CrossRef]
  6. A. Buffa, Remarks on the discretization of some noncoercive operator with applications to the heterogeneous Maxwell equations. SIAM J. Numer. Anal. 43 (2005) 1–18. [CrossRef] [MathSciNet]
  7. A. Buffa and S.H. Christiansen, A dual finite element complex on the barycentric refinement. Math. Comput. 76 (2007) 1743–1769. [CrossRef]
  8. A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell’s equations I. An integration by parts formula in Lipschitz polyhedra. Math. Methods Appl. Sci. 24 (2001) 9–30. [CrossRef] [MathSciNet]
  9. A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell’s equations II. Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Methods Appl. Sci. 24 (2001) 31–48. [CrossRef] [MathSciNet]
  10. A. Buffa and R. Hiptmair, Galerkin boundary element methods for electromagnetic scattering, in Topics in computational wave propagation. Lect. Notes Comput. Sci. Eng. 31 (2003) 83–124. [CrossRef]
  11. A. Buffa, M. Costabel and C. Schwab, Boundary element methods for Maxwell’s equations on non-smooth domains. Numer. Math. 92 (2002) 679–710. [CrossRef] [MathSciNet]
  12. A. Buffa, M. Costabel and D. Sheen, On traces for H(curl) in Lipschitz domains. J. Math. Anal. Appl. 276 (2002) 845–867. [CrossRef] [MathSciNet]
  13. A. Buffa, R. Hiptmair, T. von Petersdorff and C. Schwab, Boundary element methods for Maxwell transmission problems in Lipschitz domains. Numer. Math. 95 (2003) 459–485. [CrossRef] [MathSciNet]
  14. Y. Chang and R. Harrington, A surface formulation or characteristic modes of material bodies. IEEE Trans. Antennas Propag. 25 (1977) 789–795. [CrossRef]
  15. S.H. Christiansen, Discrete Fredholm properties and convergence estimates for the electric field integral equation. Math. Comput. 73 (2004) 143–167.
  16. S.H. Christiansen and J.-C. Nédélec, Des préconditionneurs pour la résolution numérique des équations intégrales de frontière de l’acoustique. C. R. Acad. Sci. Paris, Sér. I Math. 330 (2000) 617–622. [CrossRef] [MathSciNet]
  17. S.H. Christiansen and J.-C. Nédélec, A preconditioner for the electric field integral equation based on Calderón formulas. SIAM J. Numer. Anal. 40 (2002) 1100–1135. [CrossRef] [MathSciNet]
  18. X. Claeys, A single trace integral formulation of the second kind for acoustic scattering. Seminar of Applied Mathematics, ETH Zürich, Technical Report 2011-14. Submitted to J. Appl. Math. (2011).
  19. X. Claeys and R. Hiptmair, Boundary integral formulation of the first kind for acoustic scattering by composite structures. Report 2011-45, SAM, ETH Zürich (2011)
  20. D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, 2nd edition. Appl. Math. Sci. 93 (1998).
  21. K. Coolst, F.P. Andriulli and F. Olyslager, A Calderón, preconditioned PMCHWT equation, in Proc. of the International Conference on Electromagnetics in Advanced Applications, ICEAA’09. Torino, Italy (2009) 521–524.
  22. M. Costabel, Boundary integral operators on Lipschitz domains : elementary results. SIAM J. Math. Anal. 19 (1988) 613–626. [CrossRef] [MathSciNet]
  23. R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer. 11 (2002) 237–339. [CrossRef] [MathSciNet]
  24. R. Hiptmair, Coupling of finite elements and boundary elements in electromagnetic scattering. SIAM J. Numer. Anal. 41 (2003) 919–944. [CrossRef] [MathSciNet]
  25. R. Hiptmair, Operator preconditioning. Comput. Math. Appl. 52 (2006) 699–706. [CrossRef]
  26. R. Hiptmair and C. Jerez-Hanckes, Multiple traces boundary integral formulation for Helmholtz transmission problems. SAM, ETH Zürich, Report 2010-35 (2010).
  27. R. Hiptmair and C. Schwab, Natural boundary element methods for the electric field integral equation on polyhedra. SIAM J. Numer. Anal. 40 (2002) 66–86. [CrossRef] [MathSciNet]
  28. G.C. Hsiao, O. Steinbach and W.L. Wendland, Domain decomposition methods via boundary integral equations, Numerical Analysis VI, Ordinary differential equations and integral equations. J. Comput. Appl. Math. 125 (2000) 521–537. [CrossRef]
  29. S. Jäärvenpä, S.P. Kiminki and P. Ylä-Oijala, Calderon preconditioned surface integral equations for composite objects with junctions. IEEE Trans. Antennas Propag. 59 (2011) 546–554. [CrossRef]
  30. U. Langer and O. Steinbach, Boundary element tearing and interconnecting methods. Computing 71 (2003) 205–228. [CrossRef] [MathSciNet]
  31. W. McLean, Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000).
  32. E. Miller and A. Poggio, Computer Techniques for Electromagnetics, in Integral equation solution of three-dimensional scattering problems, Chapter 4, Pergamon, New York (1973) 159–263.
  33. S.M. Rao, D.R. Wilton and A.W. Glisson, Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propag. 30 (1986) 409–418. [CrossRef]
  34. S.A. Sauter and C. Schwab, Boundary element methods, Springer Series in Comput. Math. 39 (2011).
  35. O. Steinbach and W.L. Wendland, The construction of some efficient preconditioners in the boundary element method. Adv. Comput. Math 9 (1998) 191–216. [CrossRef] [MathSciNet]
  36. O. Steinbach and M. Windisch, Modified combined field integral equations for electromagnetic scattering. SIAM J. Numer. Anal. 47 (2009) 1149–1167. [CrossRef] [MathSciNet]
  37. M.B. Stephanson and J.-F. Lee, Preconditioned electric field integral equation using Calderon identities and dual loop/star basis functions. IEEE Trans. Antennas Propag. 57 (2009) 1274–1279. [CrossRef]
  38. T. von Petersdorff, Boundary integral equations for mixed Dirichlet, Neumann and transmission problems. Math. Methods Appl. Sci. 11 (1989) 185–213. [CrossRef] [MathSciNet]
  39. M. Windisch, Boundary element tearing and interconnecting methods for acoustic and electromagnetic scattering. Ph.D. thesis, Graz University of Technology (2010).
  40. T.-K. Wu and L.-L. Tsai, Scattering from arbitrarily-shaped lossy di-electric bodies of revolution. Radio Sci. 12 (1977) 709–718. [CrossRef]
  41. S. Yan, J.-M. Jin and Z.-P. Nie, A comparative study of Calderón preconditioners for PMCHWT equations. IEEE Trans. Antennas Propag. 58 (2010) 2375–2383. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you