Free Access
Issue
ESAIM: M2AN
Volume 46, Number 6, November-December 2012
Page(s) 1421 - 1445
DOI https://doi.org/10.1051/m2an/2012011
Published online 31 May 2012
  1. F.P. Andriulli, K. Cools, H. Bagci, F. Olyslager, A. Buffa, S. Christiansen and E. Michielssen, A multiplicative Calderon preconditioner for the electric field integral equation. IEEE Trans. Antennas Propag. 56 (2008) 2398–2412. [CrossRef] [Google Scholar]
  2. H. Bagci, F.P. Andriulli, K. Coolst, F. Olyslager and E. Michielssen, A Calderón multiplicative preconditioner for the combined field integral equation. IEEE Trans. Antennas Propag. 57 (2009) 3387–3392. [CrossRef] [Google Scholar]
  3. A. Bendali, Numerical analysis of the exterior boundary value problem for time harmonic Maxwell equations by a boundary finite element method. Part 2 : The discrete problem. Math. Comput. 43 (1984) 47–68. [Google Scholar]
  4. A. Bendali, M.B. Fares and J. Gay, A boundary-element solution of the Leontovitch problem. IEEE Trans. Antennas Propag. 47 (1999) 1597–1605. [CrossRef] [Google Scholar]
  5. Y. Boubendir, A. Bendali and M.B. Fares, Coupling of a non-overlapping domain decomposition method for a nodal finite element method with a boundary element method. Int. J. Numer. Methods Eng. 73 (2008) 1624–1650. [CrossRef] [Google Scholar]
  6. A. Buffa, Remarks on the discretization of some noncoercive operator with applications to the heterogeneous Maxwell equations. SIAM J. Numer. Anal. 43 (2005) 1–18. [CrossRef] [MathSciNet] [Google Scholar]
  7. A. Buffa and S.H. Christiansen, A dual finite element complex on the barycentric refinement. Math. Comput. 76 (2007) 1743–1769. [CrossRef] [Google Scholar]
  8. A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell’s equations I. An integration by parts formula in Lipschitz polyhedra. Math. Methods Appl. Sci. 24 (2001) 9–30. [CrossRef] [MathSciNet] [Google Scholar]
  9. A. Buffa and P. Ciarlet Jr., On traces for functional spaces related to Maxwell’s equations II. Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Methods Appl. Sci. 24 (2001) 31–48. [CrossRef] [MathSciNet] [Google Scholar]
  10. A. Buffa and R. Hiptmair, Galerkin boundary element methods for electromagnetic scattering, in Topics in computational wave propagation. Lect. Notes Comput. Sci. Eng. 31 (2003) 83–124. [CrossRef] [Google Scholar]
  11. A. Buffa, M. Costabel and C. Schwab, Boundary element methods for Maxwell’s equations on non-smooth domains. Numer. Math. 92 (2002) 679–710. [CrossRef] [MathSciNet] [Google Scholar]
  12. A. Buffa, M. Costabel and D. Sheen, On traces for H(curl) in Lipschitz domains. J. Math. Anal. Appl. 276 (2002) 845–867. [CrossRef] [MathSciNet] [Google Scholar]
  13. A. Buffa, R. Hiptmair, T. von Petersdorff and C. Schwab, Boundary element methods for Maxwell transmission problems in Lipschitz domains. Numer. Math. 95 (2003) 459–485. [CrossRef] [MathSciNet] [Google Scholar]
  14. Y. Chang and R. Harrington, A surface formulation or characteristic modes of material bodies. IEEE Trans. Antennas Propag. 25 (1977) 789–795. [CrossRef] [Google Scholar]
  15. S.H. Christiansen, Discrete Fredholm properties and convergence estimates for the electric field integral equation. Math. Comput. 73 (2004) 143–167. [Google Scholar]
  16. S.H. Christiansen and J.-C. Nédélec, Des préconditionneurs pour la résolution numérique des équations intégrales de frontière de l’acoustique. C. R. Acad. Sci. Paris, Sér. I Math. 330 (2000) 617–622. [CrossRef] [MathSciNet] [Google Scholar]
  17. S.H. Christiansen and J.-C. Nédélec, A preconditioner for the electric field integral equation based on Calderón formulas. SIAM J. Numer. Anal. 40 (2002) 1100–1135. [CrossRef] [MathSciNet] [Google Scholar]
  18. X. Claeys, A single trace integral formulation of the second kind for acoustic scattering. Seminar of Applied Mathematics, ETH Zürich, Technical Report 2011-14. Submitted to J. Appl. Math. (2011). [Google Scholar]
  19. X. Claeys and R. Hiptmair, Boundary integral formulation of the first kind for acoustic scattering by composite structures. Report 2011-45, SAM, ETH Zürich (2011) [Google Scholar]
  20. D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, 2nd edition. Appl. Math. Sci. 93 (1998). [Google Scholar]
  21. K. Coolst, F.P. Andriulli and F. Olyslager, A Calderón, preconditioned PMCHWT equation, in Proc. of the International Conference on Electromagnetics in Advanced Applications, ICEAA’09. Torino, Italy (2009) 521–524. [Google Scholar]
  22. M. Costabel, Boundary integral operators on Lipschitz domains : elementary results. SIAM J. Math. Anal. 19 (1988) 613–626. [CrossRef] [MathSciNet] [Google Scholar]
  23. R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer. 11 (2002) 237–339. [CrossRef] [MathSciNet] [Google Scholar]
  24. R. Hiptmair, Coupling of finite elements and boundary elements in electromagnetic scattering. SIAM J. Numer. Anal. 41 (2003) 919–944. [CrossRef] [MathSciNet] [Google Scholar]
  25. R. Hiptmair, Operator preconditioning. Comput. Math. Appl. 52 (2006) 699–706. [CrossRef] [Google Scholar]
  26. R. Hiptmair and C. Jerez-Hanckes, Multiple traces boundary integral formulation for Helmholtz transmission problems. SAM, ETH Zürich, Report 2010-35 (2010). [Google Scholar]
  27. R. Hiptmair and C. Schwab, Natural boundary element methods for the electric field integral equation on polyhedra. SIAM J. Numer. Anal. 40 (2002) 66–86. [CrossRef] [MathSciNet] [Google Scholar]
  28. G.C. Hsiao, O. Steinbach and W.L. Wendland, Domain decomposition methods via boundary integral equations, Numerical Analysis VI, Ordinary differential equations and integral equations. J. Comput. Appl. Math. 125 (2000) 521–537. [CrossRef] [Google Scholar]
  29. S. Jäärvenpä, S.P. Kiminki and P. Ylä-Oijala, Calderon preconditioned surface integral equations for composite objects with junctions. IEEE Trans. Antennas Propag. 59 (2011) 546–554. [CrossRef] [Google Scholar]
  30. U. Langer and O. Steinbach, Boundary element tearing and interconnecting methods. Computing 71 (2003) 205–228. [CrossRef] [MathSciNet] [Google Scholar]
  31. W. McLean, Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000). [Google Scholar]
  32. E. Miller and A. Poggio, Computer Techniques for Electromagnetics, in Integral equation solution of three-dimensional scattering problems, Chapter 4, Pergamon, New York (1973) 159–263. [Google Scholar]
  33. S.M. Rao, D.R. Wilton and A.W. Glisson, Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propag. 30 (1986) 409–418. [CrossRef] [Google Scholar]
  34. S.A. Sauter and C. Schwab, Boundary element methods, Springer Series in Comput. Math. 39 (2011). [Google Scholar]
  35. O. Steinbach and W.L. Wendland, The construction of some efficient preconditioners in the boundary element method. Adv. Comput. Math 9 (1998) 191–216. [CrossRef] [MathSciNet] [Google Scholar]
  36. O. Steinbach and M. Windisch, Modified combined field integral equations for electromagnetic scattering. SIAM J. Numer. Anal. 47 (2009) 1149–1167. [CrossRef] [MathSciNet] [Google Scholar]
  37. M.B. Stephanson and J.-F. Lee, Preconditioned electric field integral equation using Calderon identities and dual loop/star basis functions. IEEE Trans. Antennas Propag. 57 (2009) 1274–1279. [CrossRef] [Google Scholar]
  38. T. von Petersdorff, Boundary integral equations for mixed Dirichlet, Neumann and transmission problems. Math. Methods Appl. Sci. 11 (1989) 185–213. [CrossRef] [MathSciNet] [Google Scholar]
  39. M. Windisch, Boundary element tearing and interconnecting methods for acoustic and electromagnetic scattering. Ph.D. thesis, Graz University of Technology (2010). [Google Scholar]
  40. T.-K. Wu and L.-L. Tsai, Scattering from arbitrarily-shaped lossy di-electric bodies of revolution. Radio Sci. 12 (1977) 709–718. [CrossRef] [Google Scholar]
  41. S. Yan, J.-M. Jin and Z.-P. Nie, A comparative study of Calderón preconditioners for PMCHWT equations. IEEE Trans. Antennas Propag. 58 (2010) 2375–2383. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you