Free Access
Volume 47, Number 2, March-April 2013
Page(s) 317 - 348
Published online 11 January 2013
  1. ARPACK : Arnoldi Package, available on [Google Scholar]
  2. I. Babuska, The finite element method with penalty. Math. Comput. 27 (1973) 221–228. [Google Scholar]
  3. J.W. Barrett and C.M. Elliott, Finite element approximation of the Dirichlet problem using the boundary penalty method. Numer. Math. 49 (1986) 343–366. [CrossRef] [MathSciNet] [Google Scholar]
  4. A. Buffa, Y. Maday, A.T. Patera, C. Prud’homme and G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis. ESAIM : M2AN (2009). [Google Scholar]
  5. A. Chatterjee, An introduction to the proper orthogonal decomposition. Current Sci. 78 (2000) 808–817. [Google Scholar]
  6. V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Comput. Math. 5 (1986). [Google Scholar]
  7. GLPK : GNU Linear Programming Kit, available on [Google Scholar]
  8. GOMP : An OpenMP implementation for GCC, available on [Google Scholar]
  9. M.A. Grepl, Reduced-Basis Approximation and A Posteriori Error Estimation for Parabolic Partial Differential Equations. Ph.D. thesis, Massachusetts Institute of Technology (2005). [Google Scholar]
  10. M.A. Grepl and A.T. Patera, A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM : M2AN 39 (2005) 157–181. [CrossRef] [EDP Sciences] [Google Scholar]
  11. M.A. Grepl, Y. Maday, N.C. Nguyen and A.T. Patera, Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM : M2AN 41 (2007) 575–605. [Google Scholar]
  12. B. Haasdonk and M. Ohlberger, Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM : M2AN 42 (2008) 277–302. [CrossRef] [EDP Sciences] [Google Scholar]
  13. J.C. Helton, J.D. Johnson, C.J. Sallaberry and C.B. Storlie, Survey of sampling-based methods for uncertainty and sensitivity analysis. Reliability Engineering and System Safety 91 (2006) 1175–1209. [CrossRef] [Google Scholar]
  14. E. Hopf, The partial differential equation ut + uux = μxx.Commun. Pure Appl. Math. 3 (1950) 201–230. [Google Scholar]
  15. D.B.P. Huynh, G. Rozza, S. Sen and A.T. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C. R. Math. 345 (2007) 473–478. [Google Scholar]
  16. N. Jung, B. Haasdonk and D. Kroner, Reduced Basis Method for quadratically nonlinear transport equations. Int. J. Comput. Sci. Math. 2 (2009) 334–353. [CrossRef] [MathSciNet] [Google Scholar]
  17. D.J. Knezevic and A.T. Patera, A certified reduced basis method for the Fokker-Planck equation of dilute polymeric fluids : FENE dumbbells in extensional flow. SIAM J. Sci. Comput. 32 (2010) 793–817. [CrossRef] [Google Scholar]
  18. N.C. Nguyen, K. Veroy and A.T. Patera, Certified real-time solution of parametrized partial differential equations. Handbook Mater. Mod. (2005) 1523–1558. [Google Scholar]
  19. N.C. Nguyen, G. Rozza and A.T. Patera, Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’s equation. Calcolo 46 (2009) 157–185. [CrossRef] [MathSciNet] [Google Scholar]
  20. J. Nocedal and S.J. Wright, Numerical optimization. Springer-Verlag (1999). [Google Scholar]
  21. A.M. Quarteroni and A. Valli, Numerical approximation of partial differential equations. Springer (2008). [Google Scholar]
  22. D.V. Rovas, L. Machiels and Y. Maday, Reduced-basis output bound methods for parabolic problems. IMA J. Numer. Anal. 26 (2006) 423. [CrossRef] [MathSciNet] [Google Scholar]
  23. A. Saltelli, K. Chan and E.M. Scott, Sensitivity analysis. Wiley, New York (2000). [Google Scholar]
  24. J.C. Strikwerda, Finite difference schemes and partial differential equations. Society for Industrial Mathematics (2004). [Google Scholar]
  25. K. Veroy and A.T. Patera, Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations : Rigorous reduced-basis a posteriori error bounds. Int. J. Numer. Methods Fluids 47 (2005) 773–788. [CrossRef] [MathSciNet] [Google Scholar]
  26. K. Veroy, C. Prud’homme and A.T. Patera, Reduced-basis approximation of the viscous Burgers equation : rigorous a posteriori error bounds. C. R. Math. 337 (2003) 619–624. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you