Free Access
Volume 47, Number 2, March-April 2013
Page(s) 349 - 375
Published online 11 January 2013
  1. B. Amaziane, S.N. Antontsev, L. Pankratov and A. Piatnitski, Γ-convergence and homogenization of functionals in Sobolev spaces with variable exponents. J. Math. Anal. Appl. 342 (2008) 1192–1202. [CrossRef] [Google Scholar]
  2. S.N. Antontsev and J.F. Rodrigues, On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara Sez. VII Sci. Mat. 52 (2006) 19–36. [CrossRef] [MathSciNet] [Google Scholar]
  3. C. Atkinson and C.R. Champion, Some boundary-value problems for the equation ∇·( | ∇ϕ | Nϕ) = 0. Quart. J. Mech. Appl. Math. 37 (1984) 401–419. [CrossRef] [MathSciNet] [Google Scholar]
  4. L.C. Berselli, L. Diening and M. Ružička, Existence of strong solutions for incompressible fluids with shear dependent viscosities. J. Math. Fluid Mech. 12 (2010) 101–132. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Braides, V. Chiadò Piat and A. Defranceschi, Homogenization of almost periodic monotone operators. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 9 (1992) 399–432. [Google Scholar]
  6. J. Byström, Correctors for some nonlinear monotone operators. J. Nonlinear Math. Phys. 8 (2001) 8–30. [CrossRef] [MathSciNet] [Google Scholar]
  7. J. Byström, Sharp constants for some inequalities connected to the p-Laplace operator. JIPAM. J. Inequal. Pure Appl. Math. 6 (2005). Article 56 (electronic) 8. [Google Scholar]
  8. B. Dacorogna, Direct methods in the calculus of variations, in Appl. Math. Sci. Springer-Verlag, Berlin 78 (1989). [Google Scholar]
  9. G. Dal Maso and A. Defranceschi, Correctors for the homogenization of monotone operators. Differ. Integral Equ. 3 (1990) 1151–1166. [Google Scholar]
  10. N. Fusco and G. Moscariello, On the homogenization of quasilinear divergence structure operators. Ann. Mat. Pura Appl. 146 (1987) 1–13. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Garroni and R.V. Kohn, Some three-dimensional problems related to dielectric breakdown and polycrystal plasticity. Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci. 459 (2003) 2613–2625. [CrossRef] [Google Scholar]
  12. A. Garroni, V. Nesi and M. Ponsiglione, Dielectric breakdown : optimal bounds. Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci. 457 (2001) 2317–2335. [Google Scholar]
  13. R. Glowinski and J. Rappaz, Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology. ESAIM : M2AN 37 (2003) 175–186. [CrossRef] [EDP Sciences] [Google Scholar]
  14. M. Idiart, The macroscopic behavior of power-law and ideally plastic materials with elliptical distribution of porosity. Mech. Res. Commun. 35 (2008) 583–588. [CrossRef] [Google Scholar]
  15. S. Jimenez and R.P. Lipton, Correctors and field fluctuations for the pϵ(x)-Laplacian with rough exponents. J. Math. Anal. Appl. 372 (2010) 448–469. [CrossRef] [Google Scholar]
  16. A. Kelly and N.H. Macmillan, Strong Solids. Monographs on the Physics and Chemistry of Materials. Clarendon Press, Oxford (1986). [Google Scholar]
  17. S. Levine, J. Stanich and Y. Chen, Image restoration via nonstandard diffusion. Technical report (2004). [Google Scholar]
  18. O. Levy and R.V. Kohn, Duality relations for non-Ohmic composites, with applications to behavior near percolation. J. Stat. Phys. 90 (1998) 159–189. [CrossRef] [Google Scholar]
  19. R. Lipton, Homogenization and field concentrations in heterogeneous media. SIAM J. Math. Anal. 38 (2006) 1048–1059. [CrossRef] [MathSciNet] [Google Scholar]
  20. F. Murat and L. Tartar, H-convergence. In Topics in the mathematical modelling of composite materials, Progr. Nonlinear Diff. Equ. Appl. Birkhäuser Boston, Boston, MA 31 (1997) 21–43. [Google Scholar]
  21. P. Pedregal, Parametrized measures and variational principles, in Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Verlag, Basel (1997). [Google Scholar]
  22. P. Pedregal and H. Serrano, Homogenization of periodic composite power-law materials through young measures, in Multi scale problems and asymptotic analysis. GAKUTO Int. Ser. Math. Sci. Appl. Gakkōtosho, Tokyo 24 (2006) 305–310. [Google Scholar]
  23. P. Ponte Castañeda and P. Suquet, Nonlinear composties. Adv. Appl. Mech. 34 (1997) 171–302. [CrossRef] [Google Scholar]
  24. P. Ponte Castañeda and J.R. Willis, Variational second-order estimates for nonlinear composites. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 455 (1999) 1799–1811. [CrossRef] [Google Scholar]
  25. M. Ružička, Electrorheological fluids : modeling and mathematical theory. Lect. Notes Math. 1748 (2000). [Google Scholar]
  26. P. Suquet, Overall potentials and extremal surfaces of power law or ideally plastic composites. J. Mech. Phys. Solids 41 (1993) 981–1002. [CrossRef] [MathSciNet] [Google Scholar]
  27. D.R.S. Talbot and J.R. Willis, Upper and lower bounds for the overall properties of a nonlinear elastic composite dielectric I. random microgeometry. Proc. R. Soc. Lond. A 447 (1994) 365–384. [CrossRef] [Google Scholar]
  28. D.R.S. Talbot and J.R. Willis, Upper and lower bounds for the overall properties of a nonlinear elastic composite dielectric II. periodic microgeometry. Proc. R. Soc. Lond. A 447 (1994) 385–396. [CrossRef] [Google Scholar]
  29. A.C. Zaanen, An introduction to the theory of integration. Publishing Company, North-Holland, Amsterdam (1958). [Google Scholar]
  30. V.V. Zhikov, S.M. Kozlov and O.A. Oleinik, Homogenization of differential operators and integral functionals. Springer-Verlag, Berlin (1994). Translated from the Russian by G.A. Yosifian. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you