Free Access
Volume 47, Number 2, March-April 2013
Page(s) 401 - 420
Published online 11 January 2013
  1. D.M. Anderson, G.B. McFadden and A.A. Wheeler, Diffuse interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30 (1998) 139–165. [CrossRef] [Google Scholar]
  2. O. Axelsson and V.A. Barker, Finite Element Solutions of Boundary Value Problems, Theory and Computations. Academic Press, Inc. (1984). [Google Scholar]
  3. D. Bresch, B. Desjardins and C.-K. Lin, On some compressible fluid models : Korteweg, lubrication, and shallow water systems. Commun. Partial Differ. Equ. 28 (2003) 843–868. [CrossRef] [Google Scholar]
  4. I. Christie and C. Hall, The maximum principle for bilinear elements. Int. J. Numer. Meth. Eng. 20 (1984) 549–553. [CrossRef] [Google Scholar]
  5. F. Coquel, D. Diehl, C. Merklea and C. Rohde, Sharp and diffuse interface methods for phase transition problems in liquid-vapour flows, in Numerical methods for hyperbolic and kinetic problems. IRMA Lect. Math. Theor. Phys., Eur. Math. Soc. 7 (2005) 239–270. [Google Scholar]
  6. M. Crouzeix and V. Thomee, The stability in Lp and W1p of the L2-projection onto finite element function spaces. Math. Comput. 48 (1987) 521–532. [Google Scholar]
  7. R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type. Ann. Inst. Henri Poincaré, Anal. Nonlinear 18 (2001) 97–133. [CrossRef] [Google Scholar]
  8. J.E. Dunn and J. Serrin, On the thermodynamics of interstitial working. Arch. Rational Mech. Anal. 88 (1985) 95–133. [MathSciNet] [Google Scholar]
  9. I. Faragó, R. Horváth and S. Korotov, Discrete maximum principle for Galerkin finite element solutions to parabolic problems on rectangular meshes, edited by M. Feistauer et al., Springer. Numer. Math. Adv. Appl. (2004) 298–307. [Google Scholar]
  10. E. Feireisl, Dynamics of viscous compressible fluids. Oxford University Press (2004). [Google Scholar]
  11. H. Gomez, T.J.R. Hughes, X. Nogueira and V.M. Calo, Isogeometric analysis of the isothermal Navier–Stokes–Korteweg equations. Comput Methods Appl. Mech. Eng. 199 (2010) 1828–1840. [CrossRef] [Google Scholar]
  12. B. Haspot, Weak solution for compressible fluid models of Korteweg type. arXiv-preprint server (2008). [Google Scholar]
  13. H. Hattori and D. Li, Solutions for two-dimensional system for materials of Korteweg type. SIAM J. Math. Anal. 25 (1994) 85–98. [CrossRef] [MathSciNet] [Google Scholar]
  14. H. Hattori and D. Li, The existence of global solutions to a fluid dynamic model for materials of Korteweg type. J. Partial Differ. Equ. 9 (1996) 323–342. [Google Scholar]
  15. D. Jamet, D. Torres and J.U. Brackbill, On the theory and computation of surface tension : the elimination of parasitic currents through energy conservation in the second-gradient method. J. Comput. Phys. 182 (2002) 262–276. [CrossRef] [Google Scholar]
  16. S. Korotov and M. Krizek, Acute type refinements of tetrahedral partitions of polyhedral domains. SIAM J. Numer. Anal. 39 (2001) 724–733. [CrossRef] [MathSciNet] [Google Scholar]
  17. M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type. Ann. Inst. Henri Poincaré 25 (2008) 679–696. [CrossRef] [Google Scholar]
  18. C. Liu and N. Walkington, Convergence of numerical approximations of the incompressible Navier–Stokes equations with variable density and viscosity. SIAM J. Numer. Anal. 45 1287–1304 (2007). [CrossRef] [MathSciNet] [Google Scholar]
  19. C. Rohde, On local and non-local Navier–Stokes–Korteweg systems for liquid-vapour phase transitions. Z. Angew. Math. Mech. 85 (2005) 839–857. [CrossRef] [MathSciNet] [Google Scholar]
  20. R. Scardovelli and S. Zaleski, Direct numerical simulation of free-surface interfacial flow. Annu. Rev. Fluid Mech. 31 (1999) 567–603. [CrossRef] [Google Scholar]
  21. R.E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations. AMS (1997). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you