Free Access
Issue
ESAIM: M2AN
Volume 47, Number 2, March-April 2013
Page(s) 421 - 447
DOI https://doi.org/10.1051/m2an/2012035
Published online 11 January 2013
  1. A.A. Auer and M. Nooijen, Dynamically screened local correlation method using enveloping localized orbitals. J. Chem. Phys. 125 (2006) 24104. [CrossRef] [PubMed] [Google Scholar]
  2. R.J. Bartlett, Many-body perturbation theory and coupled cluster theory for electronic correlation in molecules. Ann. Rev. Phys. Chem. 32 (1981) 359. [NASA ADS] [CrossRef] [Google Scholar]
  3. R.J. Bartlett and M. Musial, Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79 (2007) 291. [NASA ADS] [CrossRef] [Google Scholar]
  4. R.J. Bartlett and G.D. Purvis, Many-body perturbation theory, coupled-pair many-electron theory, and the importance of quadruple excitations for the correlation problem. Int. J. Quantum Chem. 14 (1978) 561. [CrossRef] [Google Scholar]
  5. U. Benedikt, M. Espig, W. Hackbusch and A.A. Auer, Tensor decomposition in post-Hartree-Fock methods. I. Two-electron integrals and MP2. J. Chem. Phys. 134 (2011) 054118. [CrossRef] [PubMed] [Google Scholar]
  6. F.A. Berezin, The Method of Second Quantization. Academic Press (1966). [Google Scholar]
  7. R.F. Bishop, An overview of coupled cluster theory and its applications in physics. Theor. Chim. Acta 80 (1991) 95. [CrossRef] [Google Scholar]
  8. S.F. Boys, Construction of some molecular orbitals to be approximately invariant for changes from one molecule to another. Rev. Mod. Phys. 32 (1960) 296. [CrossRef] [MathSciNet] [Google Scholar]
  9. A. Chamorro, Method for construction of operators in Fock space. Pramana 10 (1978) 83. [CrossRef] [Google Scholar]
  10. O. Christiansen, Coupled cluster theory with emphasis on selected new developments. Theor. Chem. Acc. 116 (2006) 106. [CrossRef] [Google Scholar]
  11. P.G. Ciarlet (Ed.) and C. Lebris (Guest Ed.), Handbook of Numerical Analysis X : Special Volume. Comput. Chem. Elsevier (2003). [Google Scholar]
  12. J. Čížek, Origins of coupled cluster technique for atoms and molecules. Theor. Chim. Acta 80 (1991) 91. [CrossRef] [Google Scholar]
  13. F. Coerster, Bound states of a many-particle system. Nucl. Phys. 7 (1958) 421. [CrossRef] [Google Scholar]
  14. F. Coerster and H. Kümmel, Short range correlations in nuclear wave functions. Nucl. Phys. 17 (1960) 477. [CrossRef] [Google Scholar]
  15. Computational Chemistry Comparison and Benchmark Data Base. National Institute of Standards and Technology, available on http://cccbdb.nist.gov/ [Google Scholar]
  16. T.D. Crawford and H.F. Schaeffer III, An introduction to coupled cluster theory for computational chemists. Rev. Comput. Chem. 14 (2000) 33. [CrossRef] [Google Scholar]
  17. H.L. Cycon, R.G. Froese, W. Kirsch and B. Simon, Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry, Series Theor. Math. Phys. Springer (1987). [Google Scholar]
  18. V. Fock, Konfigurationsraum und zweite Quantelung. Z. Phys. 75 (1932) 622. [Google Scholar]
  19. S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and T. Østergaard Sørensen, Sharp regularity results for Coulombic many-electron wave functions. Commun. Math. Phys. 255 (2005) 183. [CrossRef] [Google Scholar]
  20. C. Hampel and H.-J. Werner, Local treatment of electron correlation in coupled cluster theory. J. Chem. Phys. 104 (1996) 6286. [CrossRef] [Google Scholar]
  21. T. Helgaker, P. Jørgensen and J. Olsen, Molecular Electronic-Structure Theory. John Wiley & Sons (2000). [Google Scholar]
  22. P.D. Hislop and I.M. Sigal, Introduction to spectral theory with application to Schrödinger operators. Appl. Math. Sci. 113 Springer (1996). [Google Scholar]
  23. W. Hunziker and I.M. Sigal, The quantum N-body problem. J. Math. Phys. 41 (2000) 6. [CrossRef] [Google Scholar]
  24. T. Kato, On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math. X (1957) 151. [CrossRef] [MathSciNet] [Google Scholar]
  25. W. Klopper, F.R. Manby, S. Ten no and E.F. Vallev, R12 methods in explicitly correlated molecular structure theory. Int. Rev. Phys. Chem. 25 (2006) 427. [CrossRef] [Google Scholar]
  26. W. Kutzelnigg, Error analysis and improvement of coupled cluster theory. Theor. Chim. Acta 80 (1991) 349. [CrossRef] [Google Scholar]
  27. W. Kutzelnigg, Unconventional aspects of Coupled Cluster theory, in Recent Progress in Coupled Cluster Methods, Theory and Applications, Series : Challenges and Advances in Computational Chemistry and Physics 11 (2010). To appear. [Google Scholar]
  28. H. Kümmel, Compound pair states in imperfect Fermi gases. Nucl. Phys. 22 (1961) 177. [CrossRef] [Google Scholar]
  29. H. Kümmel, K.H. Lührmann and J.G. Zabolitzky, Many-fermion theory in expS- (or coupled cluster) form. Phys. Rep. 36 (1978) 1. [CrossRef] [Google Scholar]
  30. T.J. Lee and G.E. Scuseria, Achieving chemical accuracy with Coupled Cluster methods, in Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, edited by S.R. Langhof. Kluwer Academic Publishers, Dordrecht (1995) 47. [Google Scholar]
  31. F. Neese, A. Hansen and D.G. Liakos, Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis. J. Chem. Phys. 131 (2009) 064103. [CrossRef] [PubMed] [Google Scholar]
  32. M. Nooijen, K.R. Shamasundar and D. Mukherjee, Reflections on size-extensivity, size-consistency and generalized extensivity in many-body theory. Mol. Phys. 103 (2005) 2277. [CrossRef] [Google Scholar]
  33. J. Pipek and P.G. Mazay, A fast intrinsic localization procedure for ab initio and semiempirical linear combination of atomic orbital wave functions. J. Chem. Phys. 90 (1989) 4919. [CrossRef] [Google Scholar]
  34. K. Raghavachari, G.W. Trucks, J.A. Pople and M. Head-Gordon, A fifth-order perturbation comparison of electronic correlation theories. Chem. Phys. Lett. 157 (1989) 479. [NASA ADS] [CrossRef] [Google Scholar]
  35. M. Reed and B. Simon, Methods of Modern Mathematical Physics IV – Analysis of operators. Academic Press (1978). [Google Scholar]
  36. T. Rohwedder, An analysis for some methods and algorithms of Quantum Chemistry, TU Berlin, Ph.D. thesis (2010). Available on http://opus.kobv.de/tuberlin/volltexte/2010/2852/. [Google Scholar]
  37. T. Rohwedder and R. Schneider, An analysis for the DIIS acceleration method used in quantum chemistry calculations. J. Math. Chem. 49 (2011) 1889–1914. [CrossRef] [Google Scholar]
  38. T. Rohwedder and R. Schneider, Error estimates for the Coupled Cluster method. on Preprint submitted to ESAIM : M2AN (2011). Available on http://www.dfg-spp1324.de/download/preprints/preprint098.pdf. [Google Scholar]
  39. W. Rudin, Functional Analysis. Tat McGraw & Hill Publishing Company, New Delhi (1979). [Google Scholar]
  40. R. Schneider, Analysis of the projected Coupled Cluster method in electronic structure calculation, Numer. Math. 113 (2009) 433. [CrossRef] [MathSciNet] [Google Scholar]
  41. M. Schütz and H.-J. Werner, Low-order scaling local correlation methods. IV. Linear scaling coupled cluster (LCCSD). J. Chem. Phys. 114 (2000) 661. [CrossRef] [Google Scholar]
  42. B. Simon, Schrödinger operators in the 20th century. J. Math. Phys. 41 (2000) 3523. [CrossRef] [Google Scholar]
  43. A. Szabo and N.S. Ostlund, Modern Quantum Chemistry. Dover Publications Inc. (1992). [Google Scholar]
  44. G. Teschl, Mathematical methods in quantum mechanics with applications to Schrödinger operators. AMS Graduate Stud. Math. 99 (2009). [Google Scholar]
  45. D.J. Thouless, Stability conditions and nuclear rotations in the Hartree-Fock theory. Nucl. Phys. 21 (1960) 225. [CrossRef] [MathSciNet] [Google Scholar]
  46. J. Weidmann, Lineare Operatoren in Hilberträumen, Teil I : Grundlagen, Vieweg u. Teubner (2000). [Google Scholar]
  47. J. Weidmann, Lineare Operatoren in Hilberträumen, Teil II : Anwendungen, Vieweg u. Teubner (2003). [Google Scholar]
  48. H. Yserentant, Regularity and Approximability of Electronic Wave Functions. Springer-Verlag. Lect. Notes Math. Ser. 53 (2010). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you