Free Access
Volume 47, Number 2, March-April 2013
Page(s) 421 - 447
Published online 11 January 2013
  1. A.A. Auer and M. Nooijen, Dynamically screened local correlation method using enveloping localized orbitals. J. Chem. Phys. 125 (2006) 24104. [CrossRef] [PubMed]
  2. R.J. Bartlett, Many-body perturbation theory and coupled cluster theory for electronic correlation in molecules. Ann. Rev. Phys. Chem. 32 (1981) 359. [NASA ADS] [CrossRef]
  3. R.J. Bartlett and M. Musial, Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79 (2007) 291. [NASA ADS] [CrossRef]
  4. R.J. Bartlett and G.D. Purvis, Many-body perturbation theory, coupled-pair many-electron theory, and the importance of quadruple excitations for the correlation problem. Int. J. Quantum Chem. 14 (1978) 561. [CrossRef]
  5. U. Benedikt, M. Espig, W. Hackbusch and A.A. Auer, Tensor decomposition in post-Hartree-Fock methods. I. Two-electron integrals and MP2. J. Chem. Phys. 134 (2011) 054118. [CrossRef] [PubMed]
  6. F.A. Berezin, The Method of Second Quantization. Academic Press (1966).
  7. R.F. Bishop, An overview of coupled cluster theory and its applications in physics. Theor. Chim. Acta 80 (1991) 95. [CrossRef]
  8. S.F. Boys, Construction of some molecular orbitals to be approximately invariant for changes from one molecule to another. Rev. Mod. Phys. 32 (1960) 296. [CrossRef] [MathSciNet]
  9. A. Chamorro, Method for construction of operators in Fock space. Pramana 10 (1978) 83. [CrossRef]
  10. O. Christiansen, Coupled cluster theory with emphasis on selected new developments. Theor. Chem. Acc. 116 (2006) 106. [CrossRef]
  11. P.G. Ciarlet (Ed.) and C. Lebris (Guest Ed.), Handbook of Numerical Analysis X : Special Volume. Comput. Chem. Elsevier (2003).
  12. J. Čížek, Origins of coupled cluster technique for atoms and molecules. Theor. Chim. Acta 80 (1991) 91. [CrossRef]
  13. F. Coerster, Bound states of a many-particle system. Nucl. Phys. 7 (1958) 421. [CrossRef]
  14. F. Coerster and H. Kümmel, Short range correlations in nuclear wave functions. Nucl. Phys. 17 (1960) 477. [CrossRef]
  15. Computational Chemistry Comparison and Benchmark Data Base. National Institute of Standards and Technology, available on
  16. T.D. Crawford and H.F. Schaeffer III, An introduction to coupled cluster theory for computational chemists. Rev. Comput. Chem. 14 (2000) 33. [CrossRef]
  17. H.L. Cycon, R.G. Froese, W. Kirsch and B. Simon, Schrödinger Operators with Applications to Quantum Mechanics and Global Geometry, Series Theor. Math. Phys. Springer (1987).
  18. V. Fock, Konfigurationsraum und zweite Quantelung. Z. Phys. 75 (1932) 622.
  19. S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and T. Østergaard Sørensen, Sharp regularity results for Coulombic many-electron wave functions. Commun. Math. Phys. 255 (2005) 183. [CrossRef]
  20. C. Hampel and H.-J. Werner, Local treatment of electron correlation in coupled cluster theory. J. Chem. Phys. 104 (1996) 6286. [CrossRef]
  21. T. Helgaker, P. Jørgensen and J. Olsen, Molecular Electronic-Structure Theory. John Wiley & Sons (2000).
  22. P.D. Hislop and I.M. Sigal, Introduction to spectral theory with application to Schrödinger operators. Appl. Math. Sci. 113 Springer (1996).
  23. W. Hunziker and I.M. Sigal, The quantum N-body problem. J. Math. Phys. 41 (2000) 6. [CrossRef]
  24. T. Kato, On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math. X (1957) 151. [CrossRef] [MathSciNet]
  25. W. Klopper, F.R. Manby, S. Ten no and E.F. Vallev, R12 methods in explicitly correlated molecular structure theory. Int. Rev. Phys. Chem. 25 (2006) 427. [CrossRef]
  26. W. Kutzelnigg, Error analysis and improvement of coupled cluster theory. Theor. Chim. Acta 80 (1991) 349. [CrossRef]
  27. W. Kutzelnigg, Unconventional aspects of Coupled Cluster theory, in Recent Progress in Coupled Cluster Methods, Theory and Applications, Series : Challenges and Advances in Computational Chemistry and Physics 11 (2010). To appear.
  28. H. Kümmel, Compound pair states in imperfect Fermi gases. Nucl. Phys. 22 (1961) 177. [CrossRef]
  29. H. Kümmel, K.H. Lührmann and J.G. Zabolitzky, Many-fermion theory in expS- (or coupled cluster) form. Phys. Rep. 36 (1978) 1. [CrossRef]
  30. T.J. Lee and G.E. Scuseria, Achieving chemical accuracy with Coupled Cluster methods, in Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, edited by S.R. Langhof. Kluwer Academic Publishers, Dordrecht (1995) 47.
  31. F. Neese, A. Hansen and D.G. Liakos, Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis. J. Chem. Phys. 131 (2009) 064103. [CrossRef] [PubMed]
  32. M. Nooijen, K.R. Shamasundar and D. Mukherjee, Reflections on size-extensivity, size-consistency and generalized extensivity in many-body theory. Mol. Phys. 103 (2005) 2277. [CrossRef]
  33. J. Pipek and P.G. Mazay, A fast intrinsic localization procedure for ab initio and semiempirical linear combination of atomic orbital wave functions. J. Chem. Phys. 90 (1989) 4919. [CrossRef]
  34. K. Raghavachari, G.W. Trucks, J.A. Pople and M. Head-Gordon, A fifth-order perturbation comparison of electronic correlation theories. Chem. Phys. Lett. 157 (1989) 479. [NASA ADS] [CrossRef]
  35. M. Reed and B. Simon, Methods of Modern Mathematical Physics IV – Analysis of operators. Academic Press (1978).
  36. T. Rohwedder, An analysis for some methods and algorithms of Quantum Chemistry, TU Berlin, Ph.D. thesis (2010). Available on
  37. T. Rohwedder and R. Schneider, An analysis for the DIIS acceleration method used in quantum chemistry calculations. J. Math. Chem. 49 (2011) 1889–1914. [CrossRef]
  38. T. Rohwedder and R. Schneider, Error estimates for the Coupled Cluster method. on Preprint submitted to ESAIM : M2AN (2011). Available on
  39. W. Rudin, Functional Analysis. Tat McGraw & Hill Publishing Company, New Delhi (1979).
  40. R. Schneider, Analysis of the projected Coupled Cluster method in electronic structure calculation, Numer. Math. 113 (2009) 433. [CrossRef] [MathSciNet]
  41. M. Schütz and H.-J. Werner, Low-order scaling local correlation methods. IV. Linear scaling coupled cluster (LCCSD). J. Chem. Phys. 114 (2000) 661. [CrossRef]
  42. B. Simon, Schrödinger operators in the 20th century. J. Math. Phys. 41 (2000) 3523. [CrossRef]
  43. A. Szabo and N.S. Ostlund, Modern Quantum Chemistry. Dover Publications Inc. (1992).
  44. G. Teschl, Mathematical methods in quantum mechanics with applications to Schrödinger operators. AMS Graduate Stud. Math. 99 (2009).
  45. D.J. Thouless, Stability conditions and nuclear rotations in the Hartree-Fock theory. Nucl. Phys. 21 (1960) 225. [CrossRef] [MathSciNet]
  46. J. Weidmann, Lineare Operatoren in Hilberträumen, Teil I : Grundlagen, Vieweg u. Teubner (2000).
  47. J. Weidmann, Lineare Operatoren in Hilberträumen, Teil II : Anwendungen, Vieweg u. Teubner (2003).
  48. H. Yserentant, Regularity and Approximability of Electronic Wave Functions. Springer-Verlag. Lect. Notes Math. Ser. 53 (2010). [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you