Free Access
Volume 47, Number 2, March-April 2013
Page(s) 539 - 554
Published online 11 January 2013
  1. R. Adams, Sobolev Spaces. Academic Press, New-York (1975).
  2. T. Arbogast and D. Brunson, A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium. Comput. Geosci. 11 (2007) 207–218. [CrossRef] [MathSciNet]
  3. T. Arbogast and H. Lehr, Homogenization of a Darcy–Stokes system modeling vuggy porous media. Comput. Geosci. 10 (2006) 291–302. [CrossRef]
  4. J. Aubin, Un théorème de compacité. CRAS Paris Sér. I 256 (1963) 5042–5044.
  5. L. Badea, M. Discacciati and A. Quarteroni, Mathematical analysis of the Navier–Stokes/Darcy coupling. Numer. Math. 1152 (2010) 195–227. [CrossRef]
  6. G. Beavers and D. Joseph, Boundary conditions at a naturally impermeable wall. J. Fluid. Mech. 30 (1967) 197–207. [CrossRef]
  7. E. Burman and P. Hansbo, A unified stabilized method for Stokes and Darcy’s equations. J. Computat. Appl. Math. 198 (2007) 35–51. [CrossRef] [MathSciNet]
  8. Y. Cao, M. Gunzburger, F. Hua and X. Wang, Coupled Stokes-Darcy model with Beavers–Joseph interface boundary condition. Commun. Math. Sci. 8 (2010) 1–25. [CrossRef]
  9. A. Çeşmelioğlu and B. Rivière, Analysis of time-dependent Navier-Stokes flow coupled with Darcy flow. J. Numer. Math. 16 (2008) 249–280. [MathSciNet]
  10. A. Çeşmelioğlu and B. Rivière, Primal discontinuous Galerkin methods for time-dependent coupled surface and subsurface flow. J. Sci. Comput. 40 (2009) 115–140. [CrossRef]
  11. P. Chidyagwai and B. Rivière, On the solution of the coupled Navier-Stokes and Darcy equations. Comput. Methods Appl. Mech. Eng. 198 (2009) 3806–3820. [CrossRef]
  12. P. Chidyagwai and B. Rivière, Numerical modelling of coupled surface and subsurface flow systems. Adv. Water Resour. 33 (2010) 92–105. [CrossRef]
  13. E.A. Coddington and N. Levinson, Theory of differential equations. McGraw–Hill, New York (1955).
  14. M. Discacciati, Domain Decomposition Methods for the Coupling of Surface and Groundwater Flows. Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland (2004).
  15. M. Discacciati and A. Quarteroni, Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations. in Numerical Analysis and Advanced Applications ENUMATH 2001. Springer, Milan (2003) 3–20.
  16. M. Discacciati and A. Quarteroni, Navier-Stokes/Darcy coupling : Modeling, analysis, and numerical approximation. Rev. Mat. Comput. 22 (2009) 315–426.
  17. M. Discacciati, A. Quarteroni and A. Valli, Robin-Robin domain decomposition methods for the Stokes-Darcy coupling. SIAM J. Numer. Anal. 45 (2007) 1246–1268. [CrossRef] [MathSciNet]
  18. V. Girault and B. Rivière, DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition. SIAM J. Numer. Anal. 47 (2009) 2052–2089. [CrossRef] [MathSciNet]
  19. P. Grisvard, Elliptic problems in nonsmooth domains. Pitman, Boston, MA. Monogr. Stud. Math. 24 (1985).
  20. N. Hanspal, A. Waghode, V. Nassehi and R. Wakeman, Numerical analysis of coupled Stokes/Darcy flows in industrial filtrations. Transp. Porous Media 64 (2006) 1573–1634. [CrossRef]
  21. J. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982) 275–311. [CrossRef] [MathSciNet]
  22. W. Jäger and A. Mikelić, On the interface boundary condition of Beavers, Joseph and Saffman. SIAM J. Appl. Math. 60 (2000) 1111–1127. [CrossRef] [MathSciNet]
  23. G. Kanschat and B. Rivière, A strongly conservative finite element method for the coupling of Stokes and Darcy flow. J. Computat. Phys. 229 (2010) 5933–5943. [CrossRef]
  24. W. Layton, F. Schieweck and I. Yotov, Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40 (2003) 2195–2218. [CrossRef] [MathSciNet]
  25. J.-L. Lions, Equations différentielles opérationnelles et problèmes aux limites. Springer-Verlag, Berlin, Heidelberg, New York (1961).
  26. J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. I. Springer-Verlag, New York (1972).
  27. K.A. Mardal, X.-C. Tai and R. Winther, A robust finite element method for Darcy-Stokes flow. SIAM J. Numer. Anal. 40 (2002) 1605–1631 (electronic). [CrossRef] [MathSciNet]
  28. M. Mu and J. Xu, A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45 (2007) 1801–1813. [CrossRef] [MathSciNet]
  29. J. Nečas, Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967).
  30. B. Rivière, Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems. J. Sci. Comput. 22 (2005) 479–500. [CrossRef]
  31. B. Rivière and I. Yotov, Locally conservative coupling of Stokes and Darcy flow. SIAM J. Numer. Anal. 42 (2005) 1959–1977. [CrossRef] [MathSciNet]
  32. P. Saffman, On the boundary condition at the surface of a porous media. Stud. Appl. Math. 50 (1971) 292–315.
  33. J. Simon, Compact sets in the space Lp(0,T;B). Ann. Math. Pures Appl. 146 (1990) 1093–1117.
  34. D. Vassilev and I. Yotov, Coupling Stokes-Darcy flow with transport. SIAM J. Sci. Comput. 31 (2009) 3661–3684. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you