Free Access
Issue |
ESAIM: M2AN
Volume 47, Number 2, March-April 2013
|
|
---|---|---|
Page(s) | 539 - 554 | |
DOI | https://doi.org/10.1051/m2an/2012034 | |
Published online | 11 January 2013 |
- R. Adams, Sobolev Spaces. Academic Press, New-York (1975). [Google Scholar]
- T. Arbogast and D. Brunson, A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium. Comput. Geosci. 11 (2007) 207–218. [CrossRef] [MathSciNet] [Google Scholar]
- T. Arbogast and H. Lehr, Homogenization of a Darcy–Stokes system modeling vuggy porous media. Comput. Geosci. 10 (2006) 291–302. [Google Scholar]
- J. Aubin, Un théorème de compacité. CRAS Paris Sér. I 256 (1963) 5042–5044. [Google Scholar]
- L. Badea, M. Discacciati and A. Quarteroni, Mathematical analysis of the Navier–Stokes/Darcy coupling. Numer. Math. 1152 (2010) 195–227. [CrossRef] [Google Scholar]
- G. Beavers and D. Joseph, Boundary conditions at a naturally impermeable wall. J. Fluid. Mech. 30 (1967) 197–207. [Google Scholar]
- E. Burman and P. Hansbo, A unified stabilized method for Stokes and Darcy’s equations. J. Computat. Appl. Math. 198 (2007) 35–51. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Cao, M. Gunzburger, F. Hua and X. Wang, Coupled Stokes-Darcy model with Beavers–Joseph interface boundary condition. Commun. Math. Sci. 8 (2010) 1–25. [Google Scholar]
- A. Çeşmelioğlu and B. Rivière, Analysis of time-dependent Navier-Stokes flow coupled with Darcy flow. J. Numer. Math. 16 (2008) 249–280. [MathSciNet] [Google Scholar]
- A. Çeşmelioğlu and B. Rivière, Primal discontinuous Galerkin methods for time-dependent coupled surface and subsurface flow. J. Sci. Comput. 40 (2009) 115–140. [CrossRef] [Google Scholar]
- P. Chidyagwai and B. Rivière, On the solution of the coupled Navier-Stokes and Darcy equations. Comput. Methods Appl. Mech. Eng. 198 (2009) 3806–3820. [Google Scholar]
- P. Chidyagwai and B. Rivière, Numerical modelling of coupled surface and subsurface flow systems. Adv. Water Resour. 33 (2010) 92–105. [CrossRef] [Google Scholar]
- E.A. Coddington and N. Levinson, Theory of differential equations. McGraw–Hill, New York (1955). [Google Scholar]
- M. Discacciati, Domain Decomposition Methods for the Coupling of Surface and Groundwater Flows. Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland (2004). [Google Scholar]
- M. Discacciati and A. Quarteroni, Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations. in Numerical Analysis and Advanced Applications ENUMATH 2001. Springer, Milan (2003) 3–20. [Google Scholar]
- M. Discacciati and A. Quarteroni, Navier-Stokes/Darcy coupling : Modeling, analysis, and numerical approximation. Rev. Mat. Comput. 22 (2009) 315–426. [Google Scholar]
- M. Discacciati, A. Quarteroni and A. Valli, Robin-Robin domain decomposition methods for the Stokes-Darcy coupling. SIAM J. Numer. Anal. 45 (2007) 1246–1268. [CrossRef] [MathSciNet] [Google Scholar]
- V. Girault and B. Rivière, DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition. SIAM J. Numer. Anal. 47 (2009) 2052–2089. [CrossRef] [MathSciNet] [Google Scholar]
- P. Grisvard, Elliptic problems in nonsmooth domains. Pitman, Boston, MA. Monogr. Stud. Math. 24 (1985). [Google Scholar]
- N. Hanspal, A. Waghode, V. Nassehi and R. Wakeman, Numerical analysis of coupled Stokes/Darcy flows in industrial filtrations. Transp. Porous Media 64 (2006) 1573–1634. [CrossRef] [Google Scholar]
- J. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982) 275–311. [Google Scholar]
- W. Jäger and A. Mikelić, On the interface boundary condition of Beavers, Joseph and Saffman. SIAM J. Appl. Math. 60 (2000) 1111–1127. [CrossRef] [MathSciNet] [Google Scholar]
- G. Kanschat and B. Rivière, A strongly conservative finite element method for the coupling of Stokes and Darcy flow. J. Computat. Phys. 229 (2010) 5933–5943. [CrossRef] [Google Scholar]
- W. Layton, F. Schieweck and I. Yotov, Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40 (2003) 2195–2218. [Google Scholar]
- J.-L. Lions, Equations différentielles opérationnelles et problèmes aux limites. Springer-Verlag, Berlin, Heidelberg, New York (1961). [Google Scholar]
- J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. I. Springer-Verlag, New York (1972). [Google Scholar]
- K.A. Mardal, X.-C. Tai and R. Winther, A robust finite element method for Darcy-Stokes flow. SIAM J. Numer. Anal. 40 (2002) 1605–1631 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
- M. Mu and J. Xu, A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45 (2007) 1801–1813. [CrossRef] [MathSciNet] [Google Scholar]
- J. Nečas, Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967). [Google Scholar]
- B. Rivière, Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems. J. Sci. Comput. 22 (2005) 479–500. [CrossRef] [Google Scholar]
- B. Rivière and I. Yotov, Locally conservative coupling of Stokes and Darcy flow. SIAM J. Numer. Anal. 42 (2005) 1959–1977. [CrossRef] [MathSciNet] [Google Scholar]
- P. Saffman, On the boundary condition at the surface of a porous media. Stud. Appl. Math. 50 (1971) 292–315. [Google Scholar]
- J. Simon, Compact sets in the space Lp(0,T;B). Ann. Math. Pures Appl. 146 (1990) 1093–1117. [Google Scholar]
- D. Vassilev and I. Yotov, Coupling Stokes-Darcy flow with transport. SIAM J. Sci. Comput. 31 (2009) 3661–3684. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.