Free Access
Issue
ESAIM: M2AN
Volume 47, Number 2, March-April 2013
Page(s) 555 - 581
DOI https://doi.org/10.1051/m2an/2012037
Published online 21 January 2013
  1. A.C. Antoulas, Approximation of large-scale dynamical systems, Advances in Design and Control. Society for Industrial and Applied Mathematics SIAM, Philadelphia, PA (2005). With a foreword by Jan C. Willems. [Google Scholar]
  2. N. Arada, E. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl. 23 (2002) 201–229. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera, An ‘empirical interpolation’ method : application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris 339 (2004) 667–672. [Google Scholar]
  4. P. Benner and E.S. Quintana-Ortí, Model reduction based on spectral projection methods, in Reduction of Large-Scale Systems, edited by P. Benner, V. Mehrmann, D.C. Sorensen, Lect. Notes Comput. Sci. Eng. 45 (2005) 5–48. [Google Scholar]
  5. E. Casas, J.C. De los Reyes and F. Tröltzsch, Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints. SIAM : J. Optim. 19 (2008) 616–643. [Google Scholar]
  6. E. Casas and F. Tröltzsch, First- and second-order optimality conditions for a class of optimal control problems with quasilinear elliptic equations. SIAM : J. Control Optim. 48 (2009) 688–718. [Google Scholar]
  7. S. Chaturantabut and D.C. Sorensen, Nonlinear model reduction via discrete empirical interpolation. SIAM : J. Sci. Comput. 32 (2010) 2737–2764. [Google Scholar]
  8. A.L. Dontchev, W.W. Hager, A.B. Poore and B. Yang, Optimality, stability, and convergence in nonlinear control. Appl. Math. Optim. 31 (1995) 297–326. [CrossRef] [MathSciNet] [Google Scholar]
  9. M.A. Grepl and M. Kärcher, Reduced basis a posteriori error bounds for parametrized linear-quadratic elliptic optimal control problems. C. R. Acad. Sci. Paris, Ser. I 349 (2011) 873–877. [Google Scholar]
  10. M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints. Springer-Verlag, Berlin. Math. Model. Theory Appl. 23 (2009). [Google Scholar]
  11. M. Hinze and S. Volkwein, Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition. Comput. Optim. Appl. 39 (2008) 319–345. [Google Scholar]
  12. P. Holmes, J.L. Lumley and G. Berkooz, Turbulence, coherent structures, dynamical systems and symmetry. Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge (1996). [Google Scholar]
  13. A.D. Ioffe, Necessary and sufficient conditions for a local minimum 3 : Second order conditions and augmented duality. SIAM : J. Control Optim. 17 (1979) 266–288. [CrossRef] [MathSciNet] [Google Scholar]
  14. K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, Philadelphia (2008). [Google Scholar]
  15. M. Kahlbacher and S. Volkwein, POD aposteriori error based inexact SQP method for bilinear elliptic optimal control problems. ESAIM : M2AN 46 (2012) 491–511. [CrossRef] [EDP Sciences] [Google Scholar]
  16. K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math. 90 (2001) 117–148. [CrossRef] [MathSciNet] [Google Scholar]
  17. O. Lass and S. Volkwein, POD Galerkin schemes for nonlinear elliptic-parabolic systems (2011). Submitted. [Google Scholar]
  18. J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag, Berlin (1971). [Google Scholar]
  19. K. Malanowski, Convergence of approximations vs. regularity of solutions for convex, control–constrained optimal control problems. Appl. Math. Optim. 8 (1981) 69–95. [CrossRef] [Google Scholar]
  20. K. Malanowski, Two-norm approach in stability and sensitivity analysis of optimization and optimal control problems. Adv. Math. Sci. Appl. 2 (1993) 397–443. [MathSciNet] [Google Scholar]
  21. K. Malanowski, Ch. Büskens and H. Maurer, Convergence of approximations to nonlinear optimal control problems, in Mathematical Programming with Data Perturbations, edited by Marcel-Dekker, Inc. Lect. Notes Pure Appl. Math. 195 (1997) 253–284. [Google Scholar]
  22. I. Neitzel and B. Vexler, A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems. Numer. Math. 120 (2012) 345–386. [CrossRef] [MathSciNet] [Google Scholar]
  23. A. Rösch and D. Wachsmuth, Numerical verification of optimality conditions. SIAM J. Control Optim. 47 (2008) 2557–2581. [CrossRef] [MathSciNet] [Google Scholar]
  24. A. Rösch and D. Wachsmuth, How to check numerically the sufficient optimality conditions for infinite-dimensional optimization problems, in Optimal control of coupled systems of partial differential equations, Int. Ser. Numer. Math. 158 (2009) 297–317. [Google Scholar]
  25. E.W. Sachs and M. Schu, A priori error estimates for reduced order models in finance. ESAIM : M2AN 47 (2013) 449–469. [CrossRef] [EDP Sciences] [Google Scholar]
  26. K. Schittkowski, Numerical solution of a time–optimal parabolic boundary-value control problem. JOTA 27 (1979) 271–290. [CrossRef] [Google Scholar]
  27. A. Studinger and S. Volkwein, Numerical analysis of POD a posteriori error estimation for optimal control (2012). [Google Scholar]
  28. T. Tonn, K. Urban and S. Volkwein, Comparison of the reduced-basis and POD a posteriori error estimators for an elliptic linear quadratic optimal control problem. Mathematical and Computer Modelling of Dynamical Systems, Math. Comput. Modell. Dyn. Syst. 17 (2011) 355–369. [Google Scholar]
  29. F. Tröltzsch, Optimal Control of Partial Differential Equations. American Math. Society, Providence, Theor. Methods Appl. 112 (2010). [Google Scholar]
  30. F. Tröltzsch and S. Volkwein, POD a posteriori error estimates for linear-quadratic optimal control problems. Comput. Optim. Appl. 44 (2009) 83–115. [CrossRef] [Google Scholar]
  31. S. Volkwein, Optimal control of a phase-field model using proper orthogonal decomposition. ZAMM Z. Angew. Math. Mech. 81 (2001) 83–97. [CrossRef] [MathSciNet] [Google Scholar]
  32. S. Volkwein, Model Reduction using Proper Orthogonal Decomposition. Lecture notes, Institute of Mathematics and Statistics, University of Konstanz (2011). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you