Free Access
Issue
ESAIM: M2AN
Volume 47, Number 3, May-June 2013
Page(s) 717 - 742
DOI https://doi.org/10.1051/m2an/2012046
Published online 04 March 2013
  1. H.C. Andersen, Rattle: a velocity version of the Shake algorithm for molecular dynamics calculations. J. Comput. Phys. 52 (1983) 24–34. [NASA ADS] [CrossRef] [Google Scholar]
  2. L. Baffico, S. Bernard, Y. Maday, G. Turinici and G. Zérah, Parallel in time molecular dynamics simulations. Phys. Rev. E 66 (2002) 057701. [CrossRef] [Google Scholar]
  3. G. Bal, On the convergence and the stability of the parareal algorithm to solve partial differential equations, in Domain decomposition methods in science and engineering, edited by R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Widlund and J. Xu. Springer Verlag, Lect. Notes Comput. Sci. Eng. 40 (2005) 425–432. [Google Scholar]
  4. G. Bal and Y. Maday, A parareal time discretization for nonlinear PDE’s with application to the pricing of an American put, in Recent developments in domain decomposition methods, edited by L.F. Pavarino and A. Toselli. Springer Verlag, Lect. Notes Comput. Sci. Eng. 23 (2002) 189–202. [Google Scholar]
  5. G. Bal and Q. Wu, Symplectic parareal, in Domain decomposition methods in science and engineering, edited by U. Langer, M. Discacciati, D.E. Keyes, O.B. Widlund and W. Zulehner. Springer Verlag, Lect. Notes Comput. Sci. Eng. 60 (2008) 401–408. [Google Scholar]
  6. A. Bellen and M. Zennaro, Parallel algorithms for initial value problems for nonlinear vector difference and differential equations. J. Comput. Appl. Math. 25 (1989) 341–350. [CrossRef] [Google Scholar]
  7. G. Benettin and A. Giorgilli, On the Hamiltonian interpolation of near to the identity symplectic mappings with application to symplectic integration algorithms. J. Stat. Phys. 74 (1994) 1117–1143. [CrossRef] [Google Scholar]
  8. L.A. Berry, W. Elwasif, J.M. Reynolds-Barredo, D. Samaddar, R. Sanchez and D.E. Newman, Event-based parareal: A data-flow based implementation of parareal. J. Comput. Phys. 231 (2012) 5945–5954. [Google Scholar]
  9. K. Burrage, Parallel and sequential methods for ordinary differential equations, Numerical Mathematics and Scientific Computation, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1995). [Google Scholar]
  10. K. Burrage, Parallel methods for ODEs. Advances Comput. Math. 7 (1997) 1–3. [CrossRef] [Google Scholar]
  11. P. Chartier and B. Philippe, A parallel shooting technique for solving dissipative ODE’s. Computing 51(3-4) (1993) 209–236. [CrossRef] [MathSciNet] [Google Scholar]
  12. X. Dai, C. Le Bris, F. Legoll and Y. Maday, Symmetric parareal algorithms for Hamiltonian systems, arXiv:preprint 1011.6222. [Google Scholar]
  13. C. Farhat, J. Cortial, C. Dastillung and H. Bavestrello, Time-parallel implicit integrators for the near-real-time prediction of linear structural dynamic responses. Int. J. Numer. Meth. Engng. 67 (2006) 697–724. [CrossRef] [Google Scholar]
  14. P. Fischer, F. Hecht and Y. Maday, A parareal in time semi-implicit approximation of the Navier Stokes equations, in Domain decomposition methods in science and engineering, edited by R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Widlund and J. Xu. Springer Verlag Lect. Notes Comput. Sci. Eng. 40 (2005) 433–440. [Google Scholar]
  15. D. Frenkel and B. Smit, Understanding molecular simulation, from algorithms to applications, 2nd ed., Academic Press (2002). [Google Scholar]
  16. M. Gander and S. Vandewalle, On the superlinear and linear convergence of the parareal algorithm, in Proceedings of the 16th International Conference on Domain Decomposition Methods, January 2005, edited by O. Widlund and D. Keyes. Springer, Lect. Notes Comput. Sci. Eng. 55 (2006) 291–298. [Google Scholar]
  17. M. Gander and S. Vandewalle, Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29 (2007) 556–578. [CrossRef] [Google Scholar]
  18. I. Garrido, B. Lee, G.E. Fladmark and M.S. Espedal, Convergent iterative schemes for time parallelization. Math. Comput. 75 (2006) 1403–1428. [CrossRef] [Google Scholar]
  19. W. Hackbusch, Parabolic multigrid methods, Computing methods in applied sciences and engineering VI (Versailles, 1983), North-Holland, Amsterdam (1984) 189–197. [Google Scholar]
  20. E. Hairer, Symmetric projection methods for differential equations on manifolds. BIT 40 (2000) 726–734. [CrossRef] [MathSciNet] [Google Scholar]
  21. E. Hairer and C. Lubich, The life span of backward error analysis for numerical integrators. Numer. Math. 76 (1997) 441–462. [CrossRef] [MathSciNet] [Google Scholar]
  22. E. Hairer, C. Lubich and G. Wanner, Geometric numerical integration: structure-preserving algorithms for ordinary differential equations. Springer Ser. Comput. Math. 31 (2002). [Google Scholar]
  23. P. Joly, Numerical methods for elastic wave propagation, in Waves in nonlinear pre-stressed materials, edited by M. Destrade and G. Saccomandi. Springer-Verlag (2007) 181–281. [Google Scholar]
  24. P. Joly, The mathematical model for elastic wave propagation. Effective computational methods for wave propagation, in Numer. Insights, Chapman & Hall/CRC (2008) 247–266. [Google Scholar]
  25. J. Laskar, A numerical experiment on the chaotic behavior of the Solar system. Nature 338 (1989) 237–238. [NASA ADS] [CrossRef] [Google Scholar]
  26. J. Laskar, Chaotic diffusion in the Solar system. Icarus 196 (2008) 1–15. [NASA ADS] [CrossRef] [Google Scholar]
  27. B. Leimkuhler and S. Reich, Simulating Hamiltonian dynamics. Cambridge University Press (2004). [Google Scholar]
  28. B.J. Leimkuhler and R.D. Skeel, Symplectic numerical integrators in constrained Hamiltonian systems. J. Comput. Phys. 112 (1994) 117–125. [CrossRef] [Google Scholar]
  29. E. Lelarasmee, A.E. Ruehli and A.L. Sangiovanni-Vincentelli, The waveform relaxation method for time-domain analysis of large scale integrated circuits. IEEE Trans. CAD of IC Syst. 1 (1982) 131–145. [Google Scholar]
  30. J.-L. Lions, Y. Maday and G. Turinici, A parareal in time discretization of PDE’s. C. R. Acad. Sci. Paris, Ser. I 332 (2001) 661–668. [Google Scholar]
  31. Y. Maday, The parareal in time algorithm, in Substructuring Techniques and Domain Decomposition Methods, edited by F. Magoulès. Chapt. 2, Saxe-Coburg Publications, Stirlingshire, UK (2010) 19–44. doi:10.4203/csets.24.2 [Google Scholar]
  32. Y. Maday and G. Turinici, A parareal in time procedure for the control of partial differential equations. C. R. Acad. Sci. Paris Ser. I 335 (2002) 387–392. [CrossRef] [Google Scholar]
  33. Y. Maday and G. Turinici, A parallel in time approach for quantum control: the parareal algorithm. Int. J. Quant. Chem. 93 (2003) 223–228. [CrossRef] [Google Scholar]
  34. Y. Maday and G. Turinici, The parareal in time iterative solver: a further direction to parallel implementation, in Domain decomposition methods in science and engineering, edited by R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Widlund and J. Xu. Springer Verlag, Lect. Notes Comput. Sci. Eng. 40 (2005) 441–448. [Google Scholar]
  35. A. Quarteroni and A. Valli, Domain decomposition methods for partial differential equations, Numerical Mathematics and Scientific Computation, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1999). [Google Scholar]
  36. S. Reich, Backward error analysis for numerical integrators. SIAM J. Numer. Anal. 36 (1999) 1549–1570. [CrossRef] [MathSciNet] [Google Scholar]
  37. J.-P. Ryckaert, G. Ciccotti and H.J.C. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23 (1977) 327–341. [Google Scholar]
  38. P. Saha, J. Stadel and S. Tremaine, A parallel integration method for Solar system dynamics. Astron. J. 114 (1997) 409–414. [Google Scholar]
  39. P. Saha and S. Tremaine, Symplectic integrators for solar system dynamics. Astron. J. 104 (1992) 1633–1640. [Google Scholar]
  40. J.M. Sanz-Serna and M.P. Calvo, Numer. Hamiltonian Problems. Chapman & Hall (1994). [Google Scholar]
  41. G.A. Staff and E.M. Rønquist, Stability of the parareal algorithm, in Domain decomposition methods in science and engineering, edited by R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Widlund and J. Xu. Springer Verlag, Lect. Notes Comput. Sci. Eng. 40 (2005) 449–456. [Google Scholar]
  42. A. Toselli and O. Widlund, Domain decomposition methods–algorithms and theory. Springer Ser. Comput. Math. 34 (2005). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you