Free Access
Issue |
ESAIM: M2AN
Volume 47, Number 3, May-June 2013
|
|
---|---|---|
Page(s) | 743 - 769 | |
DOI | https://doi.org/10.1051/m2an/2012047 | |
Published online | 29 March 2013 |
- H. Abels, H. Garcke and G. Grün, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Mod. Methods Appl. Sci. 22 (2012) 1150013. [Google Scholar]
- W. Bangerth, R. Hartmann and G. Kanschat, deal.II Differential Equations Analysis Library, Technical Reference. Available on http://www.dealii.org. [Google Scholar]
- W. Bangerth, R. Hartmann and G. Kanschat, deal.II — a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33 (2007). [Google Scholar]
- T.D. Blake, The physics of moving wetting lines. J. Coll. Interf. Sci. 299 (2006) 1–13. [Google Scholar]
- T.D. Blake and Y.D. Shikhmurzaev, Dynamic wetting by liquids of different viscosity. J. Coll. Interf. Sci. 253 (2002) 196–202. [Google Scholar]
- F. Boyer, C. Lapuerta, S. Minjeaud, B. Piar and M. Quintard, Cahn-Hilliard/Navier-Stokes model for the simulation of three-phase flows. Transp. Porous Media 82 (2010) 463–483. [Google Scholar]
- F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York, NY (1991). [Google Scholar]
- L.A. Caffarelli and N.E. Muler, An L∞ bound for solutions of the Cahn-Hilliard equation. Arch. Ration. Mech. Anal. 133 (1995) 129–144. [CrossRef] [MathSciNet] [Google Scholar]
- Antonio DeSimone, Natalie Grunewald and Felix Otto, A new model for contact angle hysteresis. Netw. Heterog. Media 2 (2007) 211–225. [CrossRef] [MathSciNet] [Google Scholar]
- J.-B. Dupont and D. Legendre, Numerical simulation of static and sliding drop with contact angle hysteresis. J. Comput. Phys. 229 (2010) 2453–2478. [CrossRef] [Google Scholar]
- J. Eggers and R. Evans, Comment on “dynamic wetting by liquids of different viscosity,” by t.d. blake and y.d. shikhmurzaev. J. Coll. Interf. Sci. 280 (2004) 537–538. [Google Scholar]
- A. Ern and J.-L. Guermond, Theory and practice of finite elements, Applied Mathematical Sciences. Springer-Verlag, New York 159, 2004. [Google Scholar]
- Xiaobing Feng, Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows. SIAM J. Numer. Anal. 44 (2006) 1049–1072. [CrossRef] [MathSciNet] [Google Scholar]
- M. Gao and X.-P. Wang, A gradient stable scheme for a phase field model for the moving contact line problem. J. Comput. Phys. 231 (2012) 1372–1386. [CrossRef] [Google Scholar]
- J.-F. Gerbeau and T. Lelièvre, Generalized Navier boundary condition and geometric conservation law for surface tension. Comput. Methods Appl. Mech. Engrg. 198 (2009) 644–656. [Google Scholar]
- V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer Series in Computational Mathematics. Springer-Verlag, Berlin, Germany (1986). [Google Scholar]
- J.-L. Guermond, P. Minev and J. Shen, Error analysis of pressure-correction schemes for the Navier-Stokes equations with open boundary conditions. SIAM J. Num. Anal. 43 (2005) 239–258. [Google Scholar]
- J.-L. Guermond and L. Quartapelle, A projection FEM for variable density incompressible flows. J. Comput. Phys. 165 (2000) 167–188. [CrossRef] [MathSciNet] [Google Scholar]
- J.-L. Guermond and A. Salgado, A splitting method for incompressible flows with variable density based on a pressure Poisson equation. J. Comput. Phys. 228 (2009) 2834–2846. [CrossRef] [Google Scholar]
- Q. He, R. Glowinski and X.-P. Wang, A least-squares/finite element method for the numerical solution of the Navier-Stokes-Cahn-Hilliard system modeling the motion of the contact line. J. Comput. Phys. 230 (2011) 4991–5009. [CrossRef] [Google Scholar]
- C. Huh and L.E. Scriven, Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Coll. Interf. Sci. 35 (1971) 85–101. [Google Scholar]
- D. Jacqmin, Calculation of two-phase Navier-Stokes flows using phase-field modeling. J. Comput. Phys. 155 (1999) 96–127. [CrossRef] [MathSciNet] [Google Scholar]
- D. Kay, V. Styles and R. Welford, Finite element approximation of a Cahn-Hilliard-Navier-Stokes system. Interfaces Free Bound. 10 (2008) 15–43. [CrossRef] [MathSciNet] [Google Scholar]
- D. Kay and R. Welford, Efficient numerical solution of Cahn-Hilliard-Navier-Stokes fluids in 2D. SIAM J. Sci. Comput. 29 (2007) 2241–2257. [CrossRef] [Google Scholar]
- J. Kim, K. Kang and J. Lowengrub, Conservative multigrid methods for Cahn-Hilliard fluids. J. Comput. Phys. 193 (2004) 511–543. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Li, M.-C. Lai, G. He and H. Zhao, An augmented method for free boundary problems with moving contact lines. Comput. & Fluids 39 (2010) 1033–1040. [CrossRef] [MathSciNet] [Google Scholar]
- S. Manservisi and R. Scardovelli, A variational approach to the contact angle dynamics of spreading droplets. Comput. & Fluids 38 (2009) 406–424. [CrossRef] [MathSciNet] [Google Scholar]
- S. Minjeaud, An unconditionally stable uncoupled scheme for a triphasic Cahn-Hilliard/Navier-Stokes model. Numer. Methods Partial Differ. Eqn. (2012). [Google Scholar]
- R.H. Nochetto, A.J. Salgado and S.W. Walker, A diffuse interface model for electrowetting on dielectric with moving contact lines (2011). Submitted to M3AS. [Google Scholar]
- C.E. Norman and M.J. Miksis, Gas bubble with a moving contact line rising in an inclined channel at finite Reynolds number. Phys. D 209 (2005) 191–204. [CrossRef] [MathSciNet] [Google Scholar]
- T. Qian, X.-P. Wang and P. Sheng, Generalized Navier boundary condition for the moving contact line. Commun. Math. Sci. 1 (2003) 333–341. [CrossRef] [Google Scholar]
- T. Qian, X.-P. Wang and P. Sheng, Molecular hydrodynamics of the moving contact line in two-phase immiscible flows. Commun. Comput. Phys. 1 (2006) 1–52. [Google Scholar]
- T. Qian, X.-P. Wang and P. Sheng, A variational approach to moving contact line hydrodynamics. J. Fluid Mech. 564 (2006) 333–360. [CrossRef] [MathSciNet] [Google Scholar]
- W. Ren and W.E, Boundary conditions for the moving contact line problem. Phys. Fluids 19 (2007) 022101. [CrossRef] [Google Scholar]
- J. Shen and X. Yang, Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows. Chin. Ann. Math. Ser. B 31 (2010) 743–758. [CrossRef] [MathSciNet] [Google Scholar]
- J. Shen and X. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin. Dyn. Syst. 28 (2010) 1669–1691. [Google Scholar]
- J. Shen and X. Yang, A phase-field model and its numerical approximation for two-phase incompressible flows with different densities and viscosities. SIAM J. Sci. Comput 32 (2010) 1159–1179. [Google Scholar]
- Y.D. Shikhmurzaev, Capillary flows with forming interfaces. Chapman & Hall/CRC, Boca Raton, FL (2008). [Google Scholar]
- Y.D. Shikhmurzaev and T.D. Blake, Response to the comment on [J. Colloid Interface Sci. 253 (2002) 196] by J. Eggers and R. Evans, J. Coll. Interf. Sci. 280 (2004) 539–541. [CrossRef] [Google Scholar]
- P.D.M. Spelt, A level-set approach for simulations of flows with multiple moving contact lines with hysteresis. J. Comput. Phys. 207 (2005) 389–404. [CrossRef] [MathSciNet] [Google Scholar]
- A. Turco, F. Alouges and A. DeSimone, Wetting on rough surfaces and contact angle hysteresis: numerical experiments based on a phase field model. ESAIM: M2AN 43 (2009) 1027–1044. [CrossRef] [EDP Sciences] [Google Scholar]
- S.M. Wise, C. Wang and J.S. Lowengrub, An energy-stable and convergent finite-difference scheme for the phase field crystal equation. SIAM J. Numer. Anal. 47 (2009) 2269–2288. [CrossRef] [MathSciNet] [Google Scholar]
- E. Zeidler, Nonlinear functional analysis and its applications. I. Fixed-point theorems, Translated from the German by Peter R. Wadsack. Springer-Verlag, New York (1986). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.