Free Access
Volume 47, Number 3, May-June 2013
Page(s) 807 - 835
Published online 29 March 2013
  1. E. Godlewski and P. Raviart, Hyperbolic systems of conservation laws. Ellipses Publ., Paris (1995). [Google Scholar]
  2. R. LeVeque, Numerical methods for conservation laws. Birkhäuser Verlag (1992). [Google Scholar]
  3. S. Mishra and Ch. Schwab, Sparse tensor multi-level Monte Carlo finite volume methods for hyperbolic conservation laws with random intitial data. Math. Comput. 81 (2012) 1979–2018. [CrossRef] [Google Scholar]
  4. S. Mishra, Ch. Schwab and J. Šukys, Multi-level Monte Carlo finite volume methods for nonlinear systems of conservation laws in multi-dimensions. J. Comput. Phys. 231 (2012) 3365–3388. [CrossRef] [Google Scholar]
  5. S. Mishra, Ch. Schwab and S. Tokareva, Stochastic Finite Volume methods for uncertainty quantification in hyperbolic conservation laws. In preparation (2012). [Google Scholar]
  6. J. Troyen, O. Le Maître, M. Ndjinga and A. Ern, Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems. J. Comput. Phys. 229 (2010) 6485–6511. [CrossRef] [Google Scholar]
  7. J. Troyen, O. Le Maître, M. Ndjinga and A. Ern, Roe solver with entropy corrector for uncertain hyperbolic systems. J. Comput. Phys. 235 (2010) 491–506. [Google Scholar]
  8. E. H. Lieb and M. Loss, Analysis: 2nd Ed. Amer. Math. Soc. Graduate Studies in Math. 14 (2001). [Google Scholar]
  9. O.G. Ernst, A. Mugler, H.J. Starkloff and E. Ullmann, On the convergence of generalized polynomial chaos expansions. ESAIM: M2AN 46 (2012) 317–339. [Google Scholar]
  10. D. Xiu and G.E. Karniadakis, Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos. Comput. Methods Appl. Mech. Engrg. 191 (2002) 4927–4948. [Google Scholar]
  11. D. Xiu and G.E. Karniadakis, Modeling uncertainty in flow simulations via generalized polynomial chaos. J. Comput. Phys. 187 (2003) 137–167. [Google Scholar]
  12. R. Abgrall, A simple, flexible and generic deterministic approach to uncertainty quantification in non-linear problems. Rapport de Recherche, INRIA 00325315 (2007). [Google Scholar]
  13. G. Poëtte, B. Després and D. Lucor, Uncertainty quantification for systems of conservation laws. J. Comput. Phys. 228 (2009) 2443–2467. [CrossRef] [Google Scholar]
  14. R. Ghanem and P. Spanos, Stochastic Finite Elements: A Spectral Approach. Dover (2003). [Google Scholar]
  15. D. Gottlieb and D. Xiu, Galerkin method for wave equations with uncertain coefficients. Commun. Comput. Phys. 3 (2008) 505–518. [Google Scholar]
  16. G. Lin, C.-H. Su and G.E. Karniadakis, Predicting shock dynamics in the presence of uncertainties. J. Comput. Phys. 217 (2006) 260–276. [CrossRef] [Google Scholar]
  17. G. Lin, C.-H. Su and G.E. Karniadakis, Stochastic modelling of random roughness in shock scattering problems: theory and simulations. Comput. Methods Appl. Mech. Eng. 197 (2008) 3420–3434. [CrossRef] [Google Scholar]
  18. X. Wan and G.E. Karniadakis, Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM J. Sci. Comput. 28 (2006) 901–928. [CrossRef] [Google Scholar]
  19. B. Debusschere, H. Najm, P. Pébay, O. Knio, R. Ghanem and O. Le Maître, Numerical challenges in the use of polynomial chaos representations for stochastic processes. SIAM J. Sci. Comput. 26 (2004) 698–719. [CrossRef] [MathSciNet] [Google Scholar]
  20. O. Knio and O. Le Maître, Uncertainty propagation in CFD using polynomial chaos decomposition. Fluid. Dynam. Res. 38 (2006) 616–640. [Google Scholar]
  21. O. Le Maître, O. Knio, H. Najm and R. Ghanem, Uncertainty propagation using Wiener-Haar expansions. J. Comput. Phys. 197 (2004) 28–57. [CrossRef] [Google Scholar]
  22. O. Le Maître, H. Najm, R. Ghanem and O. Knio, Multi-resolution analysis of Wiener-type uncertainty propagation schemes. J. Comput. Phys. 197 (2004) 502–531. [CrossRef] [Google Scholar]
  23. O. Le Maître, H. Najm, P. Pébay, R. Ghanem and O. Knio, Multi-resolution analysis scheme for uncertainty quantification in chemical systems. SIAM J. Sci. Comput. 29 (2007) 864–889. [CrossRef] [Google Scholar]
  24. T. Barth, On the propagation of the statistical model parameter uncertainty in CFD calculations. Theoret. Comput. Fluid Dyn. 26 (2012) 435–457. [CrossRef] [Google Scholar]
  25. C.W. Shu, High order ENO and WENO schemes for computational fluid dynamics. In High-Order Methods for Computational Phys. Springer 9 (1999). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you