Free Access
Volume 47, Number 3, May-June 2013
Page(s) 837 - 858
Published online 10 March 2013
  1. G. Alberti and A. DeSimone, Wetting of rough surfaces: a homogenization approach. Proc. R. Soc. A 461 (2005) 79–97. [CrossRef] [MathSciNet] [Google Scholar]
  2. G. Alberti and A. DeSimone, Quasistatic evolution of sessile drops and contact angle hysteresis. Arch. Rat. Mech. Anal. 202 (2011) 295–348. [CrossRef] [Google Scholar]
  3. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York (2000) [Google Scholar]
  4. L.A. Caffarelli, The obstacle problem revisited. J. Fourier Anal. Appl. 4 (1998) 383–402. [CrossRef] [Google Scholar]
  5. L.A. Caffarelli and A. Mellet, Capillary drops on an inhomogeneous surface, Perspectives in nonlinear partial differential equations. Contemp. Math. 446 (2007) 175–201. [CrossRef] [Google Scholar]
  6. A. DeSimone, N. Grunewald and F. Otto, A new model for contact angle hysteresis. Netw. Heterog. Media 2 (2007) 211–225. [CrossRef] [MathSciNet] [Google Scholar]
  7. J. Eckstein and D.P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55 (1992) [Google Scholar]
  8. E. Esser, Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman (2009) [Google Scholar]
  9. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. CRC Press, Boca Raton, FL (1992). [Google Scholar]
  10. L. Fedeli, A. Turco and A. DeSimone, Metastable equilibria of capillary drops on solid surfaces: a phase field approach. Contin. Mech. Thermodyn. 23 (2011) 453–471. [CrossRef] [MathSciNet] [Google Scholar]
  11. H. Federer, Geometric measure theory. Springer-Verlag New York Inc., New York (1969). [Google Scholar]
  12. R. Finn, Some properties of capillary surfaces. Milan J. Math. 70 (2002) 1–23. [CrossRef] [MathSciNet] [Google Scholar]
  13. M.J. Lai, B. Lucier and J. Wang, The convergence of a central-difference discretization of Rudin-Osher-Fatemi model for image denoising, Scale Space and Variational Methods in Computer Vision. Springer (2009) 514–526. [Google Scholar]
  14. P.L. Lions and B. Mercier, Splitting Algorithms for the Sum of Two Nonlinear Operators. SIAM J. Numer. Anal. 16 (1979) 964–979. [CrossRef] [MathSciNet] [Google Scholar]
  15. D. Quéré, Wetting and Roughness. Annu. Rev. Mater. Res. 38 (2008) 71–99. [CrossRef] [Google Scholar]
  16. J.E. Taylor, Boundary regularity for solutions to various capillarity and free boundary problems. Commun. Partial Differ. Equ. 2 (1977) 323–357. [CrossRef] [Google Scholar]
  17. H. Yang, A. Buguin, J.M. Taulemesse, K. Kaneko, S. Mery, A. Bergeret and P. Keller, Micron-Sized Main-Chain Liquid Crystalline Elastomer Actuators with Ultralarge Amplitude Contractions. J. Amer. Chem. Soc. 131 (2009) 15000–15004. [CrossRef] [Google Scholar]
  18. J. Wang and B.J. Lucier, Error Bounds for Finite-Difference Methods for Rudin-Osher-Fatemi Image Smoothing. SIAM J. Numer. Anal. 49 (2011) 845–868. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you