Free Access
Volume 47, Number 3, May-June 2013
Page(s) 903 - 932
Published online 17 April 2013
  1. C. Agut and J. Diaz, Stability analysis of the interior penalty discontinuous Galerkin method for the wave equation. INRIA Res. Report (2010). [Google Scholar]
  2. M. Ainsworth, P. Monk and W. Muniz, Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. J. Sci. Comput. 27 (2006). [Google Scholar]
  3. D.N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742–760. [CrossRef] [MathSciNet] [Google Scholar]
  4. D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of disconitnuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749–1779. [CrossRef] [MathSciNet] [Google Scholar]
  5. C. Baldassari, Modélisation et simulation numérique pour la migration terrestre par équation d’ondes. Ph.D. Thesis (2009). [Google Scholar]
  6. G. Benitez Alvarez, A.F. Dourado Loula, E.G. Dutrado Carmo and A. Alves Rochinha, A discontinuous finite element formulation for Helmholtz equation. Comput. Methods. Appl. Mech. Engrg. 195 (2006) 4018–4035. [CrossRef] [MathSciNet] [Google Scholar]
  7. G. Cohen, Higher-Order Numerical Methods for Transient Wave Equations. Springer, Berlin (2001). [Google Scholar]
  8. S. Cohen, P. Joly, J.E. Roberts and N. Tordjman, Higher-order triangular finite elements with mass-lumping for the wave equation. SIAM J. Numer. Anal. 44 (2006) 2408–2431. [CrossRef] [MathSciNet] [Google Scholar]
  9. S. Cohen, P. Joly and N. Tordjman, Higher-order finite elements with mass-lumping for the 1d wave equation. Finite Elem. Anal. Des. 16 (1994) 329–336. [CrossRef] [Google Scholar]
  10. M.A. Dablain, The application of high order differencing for the scalar wave equation. Geophys. 51 (1986) 54–56. [CrossRef] [Google Scholar]
  11. J.D. De Basabe and M.K. Sen, Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping. Geophys. J. Int. 181 (2010) 577–590. [CrossRef] [Google Scholar]
  12. Y. Epshteyn and B. Rivière, Estimation of penalty parameters for symmetric interior penalty galerkin methods. J. Comput. Appl. Math. 206 (2007) 843–872. [CrossRef] [MathSciNet] [Google Scholar]
  13. S. Fauqueux, Eléments finis mixtes spectraux et couches absorbantes parfaitement adaptées pour la propagation d’ondes élastiques en régime transitoire. Ph.D. Thesis (2003). [Google Scholar]
  14. J.-C. Gilbert and P. Joly, Higher order time stepping for second order hyperbolic problems and optimal CFL conditions. Comput. Methods Appl. Sci. 16 (2008) 67–93. [CrossRef] [Google Scholar]
  15. M.J. Grote, A. Schneebeli and D. Schötzau, Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44 (2006) 2408–2431. [CrossRef] [MathSciNet] [Google Scholar]
  16. M.J. Grote and D. Schötzau, Convergence analysis of a fully discrete dicontinuous Galerkin method for the wave equation. Preprint No. 2008-04 (2008). [Google Scholar]
  17. D. Komatitsch and J. Tromp, Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys J. Int. 139 (1999) 806–822. [CrossRef] [Google Scholar]
  18. P. Lax and B. Wendroff, Systems of conservation laws. Commun. Pure Appl. Math. XIII (1960) 217–237. [CrossRef] [MathSciNet] [Google Scholar]
  19. G. Seriani and E. Priolo, Spectral element method for acoustic wave simulation in heterogeneous media. Finite Elem. Anal. Des. 16 (1994) 37–348. [CrossRef] [Google Scholar]
  20. K. Shahbazi, An explicit expression for the penalty parameter of the interior penalty method. J. Comput. Phys. 205 (2005) 401–407. [CrossRef] [Google Scholar]
  21. G.R. Shubin and J.B. Bell, A modified equation approach to constructing fourth-order methods for acoustic wave propagation. SIAM J. Sci. Statist. Comput. 8 (1987) 135–151. [CrossRef] [MathSciNet] [Google Scholar]
  22. T. Warburton and J.S. Hesthaven, On the constants in hp-finite element trace inverse inequalities. Comput. Methods Appl. Mech. Engrg. 192 (2003) 2765–2773. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you