Issue
ESAIM: M2AN
Volume 47, Number 4, July-August 2013
Direct and inverse modeling of the cardiovascular and respiratory systems
Page(s) 987 - 1016
DOI https://doi.org/10.1051/m2an/2012054
Published online 07 June 2013
  1. R.R. Aliev and A.V. Panfilov, A simple two-variable model of cardiac excitation. Chaos Soliton. Fract. 7 (1996) 293–301. [CrossRef] [Google Scholar]
  2. M. Beck, C.K.R.T. Jones, D. Schaeffer and M. Wechselberger, Electrical Waves in a One-Dimensional Model of Cardiac Tissue. SIAM J. Appl. Dynam. Syst. 7 (2008) 1558–1581. [CrossRef] [Google Scholar]
  3. G. W. Beeler and H. Reuter, Reconstruction of the action potential of ventricular myocardial fibres. J. Physiol. 268 (1977) 177–210. [CrossRef] [PubMed] [Google Scholar]
  4. M. Boulakia, M. Fernàndez, J.-F. Gerbeau and N. Zemzemi, Towards the numerical simulation of electrocardiograms, in Functional Imaging and Modeling of the Heart, vol. 4466 of Lect. Notes Comput. Sci., edited by F. Sachse and G. Seemann. Springer, Berlin/Heidelberg (2007) 240–249. [Google Scholar]
  5. N. F. Britton, Essential Mathematical Biology. Springer Undergrad. Math. Series (2005). [Google Scholar]
  6. J.W. Cain, Taking math to the heart: Mathematical challenges in cardiac electrophysiology. Notices of the AMS 58 (2011) 542–549. [Google Scholar]
  7. R.H. Clayton and A.V. Panfilov, A guide to modelling cardiac electrical activity in anatomically detailed ventricles. Prog. Biophys. Mol. Bio. 96 (2008) 19–43. [CrossRef] [PubMed] [Google Scholar]
  8. P. Colli Franzone, L. Guerri and S. Rovida, Wavefront propagation in an activation model of the anisotropic cardiac tissue: asymptotic analysis and numerical simulations. J. Math. Biol. 28 (1990) 121–176. DOI: 10.1007/BF00163143. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  9. B. Deng, The existence of infinitely many traveling front and back waves in the Fitzhugh - Nagumo equations. SIAM J. Math. Anal. 22 (1991) 1631–1650. [CrossRef] [MathSciNet] [Google Scholar]
  10. K. Djabella, M. Landau and M. Sorine, A two-variable model of cardiac action potential with controlled pacemaker activity and ionic current interpretation. 46th IEEE Conf. Decis. Control (2007) 5186–5191. [Google Scholar]
  11. E.G. Tolkacheva, D.G. Schaeffer, D.J. Gauthier and C.C. Mitchell, Analysis of the Fenton-Karma model through an approximation by a one-dimensional map. Chaos 12 (2002) 1034–1042 . [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  12. F. Fenton and A. Karma, Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation. Chaos 8 (1998) 20–47. [CrossRef] [PubMed] [Google Scholar]
  13. R.A. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1 (1961) 445–466. [CrossRef] [PubMed] [Google Scholar]
  14. S. Hastings, Single and multiple pulse waves for the Fitzhugh-Nagumo equations. SIAM J. Appl. Math. 42 (1982) 247–260. [CrossRef] [Google Scholar]
  15. A.L. Hodgkin and A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117 (1952) 500–544. [CrossRef] [PubMed] [Google Scholar]
  16. J. Keener and J. Sneyd, Mathematical Physiology. Springer (2004). [Google Scholar]
  17. J.P. Keener, Modeling electrical activity of cardiac cells, Two variable models, Mitchell-Schaeffer revised. Available at www.math.utah.edu/˜keener/lectures/ionic_models/Two_variable_models. [Google Scholar]
  18. J.P. Keener, An eikonal-curvature equation for action potential propagation in myocardium. J. Math. Biol. 29 (1991) 629–651. DOI: 10.1007/BF00163916. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  19. K.H. Ten Tusscher, D. Noble, P.J. Noble and A.V. Panfilov, A model for human ventricular tissue. Am. J. Physiol. Heart Circ. Physiol. 286 (2004) H1973–H1589. [Google Scholar]
  20. R. Killmann, P. Wach and F. Dienstl, Three-dimensional computer model of the entire human heart for simulation of reentry and tachycardia: gap phenomenon and Wolff-Parkinson-White syndrome. Basic Res. Cardiol. 86 (1991) 485–501. [CrossRef] [PubMed] [Google Scholar]
  21. C.H. Luo and Y. Rudy, A dynamic model of the cardiac ventricular action potential: I. simulations of ionic currents and concentration changes. Circ. Res. 74 (1994) 1071–1096. [CrossRef] [PubMed] [Google Scholar]
  22. C. Mitchell and D. Schaeffer, A two-current model for the dynamics of cardiac membrane. Bull. Math. Bio. 65 (2003) 767–793. [CrossRef] [PubMed] [Google Scholar]
  23. B.R. Munson, D.F. Young and T.H. Okiishi, Fundamentals of Fluid Mechanics. Wiley and Sons (2001). [Google Scholar]
  24. J. Nagumo, S. Arimoto and S. Yoshizawa, An active pulse transmission line simulating nerve axon. Proc. IRE. 50 (1962) 2061–2070. [CrossRef] [Google Scholar]
  25. D. Noble, A modification of the Hodgkin-Huxley equations applicable to purkinje fibre action and pacemaker potentials. J. Physiol. 160 (1962) 317–352. [CrossRef] [PubMed] [Google Scholar]
  26. C. Pierre, Modélisation et simulation de l’activité électrique du coeur dans le thorax, analyse numérique et méthodes de volumes finis. PhD thesis, University of Nantes (2005). [Google Scholar]
  27. J. Relan, M. Sermesant, H. Delingette, M. Pop, G.A. Wright and N. Ayache, Quantitative comparison of two cardiac electrophysiology models using personalisation to optical and mr data, in Proc. Sixth IEEE Int. Symp. Biomed. Imaging 2009 (ISBI’09). [Google Scholar]
  28. J. Relan, M. Sermesant, M. Pop, H. Delingette, M. Sorine, G.A. Wright and N. Ayache, Parameter estimation of a 3d cardiac electrophysiology model including the restitution curve using optical and MR data, in World Congr. on Med. Phys. and Biomed. Eng., WC 2009, München (2009). [Google Scholar]
  29. D. Schaeffer, J. Cain, D. Gauthier, S. Kalb, R. Oliver, E. Tolkacheva, W. Ying and W. Krassowska, An ionically based mapping model with memory for cardiac restitution. Bull. Math. Bio. 69 (2007) 459–482. DOI: 10.1007/s11538-006-9116-6. [CrossRef] [Google Scholar]
  30. D. Schaeffer, W. Ying and X. Zhao, Asymptotic approximation of an ionic model for cardiac restitution. Nonlinear Dyn. 51 (2008) 189–198. DOI: 10.1007/s11071-007-9202-9. [CrossRef] [PubMed] [Google Scholar]
  31. M. Sermesant, Y. Coudière, V. Moreau Villéger, K.S. Rhode, D.L.G. Hill and R. Ravazi, A fast-marching approach to cardiac electrophysiology simulation for XMR interventional imaging, in Proc. of MICCAI’05, vol. 3750 of Lect. Notes Comput. Sci., Palm Springs, California. Springer Verlag (2005) 607–615. [Google Scholar]
  32. J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.-A. Mardal and A. Tveito, Computing the Electrical Activity in the Heart. Springer, Monogr. Comput. Sci. Eng. 1 (2006). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you